Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_3_a7, author = {D. I. Padalitsa and A. S. Filatyev and O. V. Yanova and A. A. Golikov}, title = {Aerodynamic simulation study of a space vehicle with atmosphere-breathing electric propulsion in free molecular gas flow}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {115--133}, publisher = {mathdoc}, volume = {36}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_3_a7/} }
TY - JOUR AU - D. I. Padalitsa AU - A. S. Filatyev AU - O. V. Yanova AU - A. A. Golikov TI - Aerodynamic simulation study of a space vehicle with atmosphere-breathing electric propulsion in free molecular gas flow JO - Matematičeskoe modelirovanie PY - 2024 SP - 115 EP - 133 VL - 36 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2024_36_3_a7/ LA - ru ID - MM_2024_36_3_a7 ER -
%0 Journal Article %A D. I. Padalitsa %A A. S. Filatyev %A O. V. Yanova %A A. A. Golikov %T Aerodynamic simulation study of a space vehicle with atmosphere-breathing electric propulsion in free molecular gas flow %J Matematičeskoe modelirovanie %D 2024 %P 115-133 %V 36 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2024_36_3_a7/ %G ru %F MM_2024_36_3_a7
D. I. Padalitsa; A. S. Filatyev; O. V. Yanova; A. A. Golikov. Aerodynamic simulation study of a space vehicle with atmosphere-breathing electric propulsion in free molecular gas flow. Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 115-133. http://geodesic.mathdoc.fr/item/MM_2024_36_3_a7/
[1] J. C. Liou, N. Johnson, N. Hill, “Controlling the growth of future LEO debris populations with active debris removal”, Acta Astronautica, 66:5-6 (2010), 648–653 | DOI
[2] J. R. Wertz, W. J. Larson, Space Mission Analysis and Design, 3rd ed., Microcosm Press and Springer, 1999, 813 pp.
[3] System critical design review gravity field and steady-state ocean circulation explorer, Technical Report, Spazio Alenia, 2005
[4] D. DiCara, J. G. del Amo, A. Santovincenzo, B. C. Dominguez, M. Arcioni, A. Caldwell, I. Roma, “RAM electric propulsion for low earth orbit operation: an ESA study”, The 30th International Electric Propulsion Conference (Florence, Italy, 2007)
[5] A. A. Golikov, A. S. Filatyev, “Integrated optimization of trajectories and layout parameters of spacecraft with air-breathing electric propulsion”, Acta Astronautica, 193 (2022), 644–652 | DOI
[6] V. K. Dogra, J. N. Moss, J. M. Price, Rarefied Flow Past A Flat Plate At Incidence, Technical Memorandum, NASA, 1988
[7] R. G. Lord, “Application of the Cercignani-Lampis scattering kernel to the direct simulation Monte Carlo calculations”, 17th International Symposium on Rarefiled Gas Dynamics, Wiley-VCH Publisher, Aachen, 1990, 1427–1433 | MR
[8] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press, 1994, 479 pp. | MR
[9] A. I. Erofeev, A. P. Nikiforov, V. V. Plugin, “Eksperimentalnye issledovaniya vozduhozabornika v svobodnomolekulyarnom potoke gaza”, Uchenye zapiski TSAGI, 48:3 (2017), 56–69
[10] L. H. Sentman, Free Molecule Flow Theory and Its Application to the Determination of Aerodynamic Forces, Technical Report 448514, Lockheed Missiles and Space Company, 1961
[11] F. Pellicani, Atmosphere Re-Entry Simulation Using Direct Simulation Monte Carlo (DSMC) Method, Master Thesis, EPFL, Lausanne, 2016
[12] R. Maltsev, Chislennoye modelirovanie sverhzvukovyh techeniy razrezhennyh gazovyh smesey s silno otlichayushchimisya massami component, avtoreferat dissertatsii, Novosibirskiy Gosudarstvenniy Universitet, Novosibirsk, 2014
[13] C. White, M. K. Borg, T. J. Scanlon, S. M. Longshaw, B. John, D. R. Emerson, J. M. Reese, “DSMCFoam+: An OpenFOAM based direct simulation Monte Carlo solver”, Computer Physics Communications, 224 (2018), 22–43 | DOI
[14] T. J. Scanlon, E. Roohi, C. White, M. Darbandi, J. M. Reese, “An open source, parallel DSMC code for rarefied gas flows in arbitrary geometries”, Comp. Fluids, 39 (2010), 2078–2089 | DOI | Zbl
[15] A. I. Erofeev, “Otbor gaza iz vozduhozabornika v perehodnom rezhime techeniya razrezhennogo gaza”, Uchenye zapiski TSAGI, 49:7 (2018), 28–37
[16] F. Romano et al, “Intake design for an Atmosphere-Breathing Electric Propulsion System (ABEP)”, Acta Astronautica, 187 (2021), 225–235 | DOI