Gradient-drift instability research in the region of developed equatorial plasma bubbles
Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 87-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of numerical experiments are presented, which involve calculations of the spatial distribution of electron concentration and electric potential field formed as a result of the gradient-drift instability in the domain of developed equatorial plasma bubbles. A characteristic feature of equatorial plasma bubbles is the presence of large ratios of electron concentration outside the plasma bubbles compared to their values inside the plasma bubbles. This creates large concentration gradients and high cross-field drift velocities relative to the Earth's magnetic field lines. These conditions lead to the occurrence of large positive values of the increment of the gradient-drift instability, resulting in the enhancement of small-scale inhomogeneities in the ionospheric plasma with spatial-temporal scales characteristic of equatorial F-scattering. The obtained results are consistent with previous studies by the authors, aimed at investigating the peculiarities of the increment of the gradient-drift instability.
Keywords: gradient-drift instability, growth rate, F-scatter, Rayleigh-Taylor instability, ionospheric bubbles, geomagnetic field.
@article{MM_2024_36_3_a5,
     author = {N. M. Kashchenko and S. A. Ishanov and E. V. Zubkov and L. V. Zinin},
     title = {Gradient-drift instability research in the region of developed equatorial plasma bubbles},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {87--95},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_3_a5/}
}
TY  - JOUR
AU  - N. M. Kashchenko
AU  - S. A. Ishanov
AU  - E. V. Zubkov
AU  - L. V. Zinin
TI  - Gradient-drift instability research in the region of developed equatorial plasma bubbles
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 87
EP  - 95
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_3_a5/
LA  - ru
ID  - MM_2024_36_3_a5
ER  - 
%0 Journal Article
%A N. M. Kashchenko
%A S. A. Ishanov
%A E. V. Zubkov
%A L. V. Zinin
%T Gradient-drift instability research in the region of developed equatorial plasma bubbles
%J Matematičeskoe modelirovanie
%D 2024
%P 87-95
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_3_a5/
%G ru
%F MM_2024_36_3_a5
N. M. Kashchenko; S. A. Ishanov; E. V. Zubkov; L. V. Zinin. Gradient-drift instability research in the region of developed equatorial plasma bubbles. Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 87-95. http://geodesic.mathdoc.fr/item/MM_2024_36_3_a5/

[1] N. M. Kashchenko, S. V. Matsievskii, M. A. Nikitin, “Ionosfernye puzyri: ionnyi sostav, skorosti dvizheniia plazmy i struktura”, Izvestiia vuzov. Radiofizika, 32:11 (1989), 1320–1326

[2] N. M. Kashchenko, S. A. Ishanov, S. V. Matsievsky, “Rayleigh-Taylor Instability Development in the Equatorial Ionosphere and a Geometry of an Initial Irregularity”, Mathematical Models and Computer Simulations, 11:3 (2019), 341–348 | DOI | MR

[3] S. L. Ossakow, P. K. Chaturvedi, “Morphological studies of rising equatorial spread F bubbles”, J. Geophys. Res., 83 (1978), 2085–2090 | DOI

[4] D. T. Farley, B. B. Balsley, R. F. Woodman, J. P. McClure, “Equatorial spread F: Implications of VHF radar observations”, J. Geophys. Res., 75 (1970), 7199–7216 | DOI

[5] N. M. Kashchenko, S. A. Ishanov, S. V. Matsievskii, E. P. Stavitskaia, “Chislennoe issledovanie parametrov gradientno-dreifovoi neustoichivosti na frontakh plazmennykh puzyrei”, Aktualnye problemy prikladnoi matematiki, informatiki i mekhaniki, FGBOU VO «Voronezhskii gosudarstvennyi universitet», Voronezh, 2021, 927–933

[6] N. M. Kashchenko, S. A. Ishanov, S. V. Matsievsky, “Numerical Study of the Gradient-Drift In-stabilitys Growth Rate at the Fronts of Equatorial Plasma Bubbles”, Mathematical Models and Computer Simulations, 14:4 (2021), 623–630 | DOI | DOI | MR

[7] Iu. A. Sukovatov, “Teoreticheskoe issledovanie nelineinoi stadii gradientno-dreifovoi neustoichivosti vo vneshnei ionosfere”, Izvestiia AltGU, 2012, no. 1-1, 222–225

[8] A. V. Safronov, “Otsenka tochnosti i sravnitelnyi analiz raznostnykh skhem skvoznogo scheta povyshennogo poriadka”, Vychisl. metody i progr., 11:1 (2010), 137–143

[9] N. M. Kashchenko, S. A. Ishanov, E. V. Zubkov, L. V. Zinin, E. P. Stavitskaia, “Trekhmernaia chislennaia model perenosa s ispolzovaniem monotonizirovannoi Z-skhemy”, Mezhdunarodnaia nauch. konferentsiia «Aktualnye problemy prikladnoi matematiki, informatiki i mekhaniki» (13-15 dek. 2021 g.), «Nauchno-issledovatelskie publikatsii», Voronezh, 2022, 494–503

[10] N. M. Kashchenko, S. A. Ishanov, E. V. Zubkov, “Chislennaya model perenosa v zadachah neustojchivostej nizkoshirotnoj ionosfery Zemli s ispolzovaniem dvumernoj monotonizirovannoj Z-skhemy”, Kompyuternye issledovaniya i modelirovanie, 13:5 (2021), 1011–1023

[11] N. M. Kashchenko, S. A. Ishanov, L. V. Zinin, S. V. Matsievsky, “Chislennyj metod resheniya dvumernogo uravneniya perenosa pri modelirovanii ionosfery Zemli na osnove monotoni-zirovannoj Z-skhemy”, Komp. issledovaniya i modelirovanie, 12:1 (2020), 43–58