Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_3_a4, author = {I. V. Derevich and A. A. Panova}, title = {Modeling the spread of viral infection in a local atmosphere infected with {SARS-COV-2} virus. {Constant} virion concentration}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {67--86}, publisher = {mathdoc}, volume = {36}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_3_a4/} }
TY - JOUR AU - I. V. Derevich AU - A. A. Panova TI - Modeling the spread of viral infection in a local atmosphere infected with SARS-COV-2 virus. Constant virion concentration JO - Matematičeskoe modelirovanie PY - 2024 SP - 67 EP - 86 VL - 36 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2024_36_3_a4/ LA - ru ID - MM_2024_36_3_a4 ER -
%0 Journal Article %A I. V. Derevich %A A. A. Panova %T Modeling the spread of viral infection in a local atmosphere infected with SARS-COV-2 virus. Constant virion concentration %J Matematičeskoe modelirovanie %D 2024 %P 67-86 %V 36 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2024_36_3_a4/ %G ru %F MM_2024_36_3_a4
I. V. Derevich; A. A. Panova. Modeling the spread of viral infection in a local atmosphere infected with SARS-COV-2 virus. Constant virion concentration. Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 67-86. http://geodesic.mathdoc.fr/item/MM_2024_36_3_a4/
[1] W. J. Wiersinga, A. Rhodes, A. Cheng, et al, “Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19) A Review”, JAMA, 324:8 (2020), 782–793 | DOI
[2] E. Hartenian, D. Nandakumar, A. Lari, et. al., “The molecular virology of coronaviruses”, J. Biol. Chem, 11:295 (37) (2020), 12910–12934 | DOI
[3] J. A. Müller, R. Groß, C. Conzelmann et al, “SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas”, Nat. Metab., 3 (2021), 149–165 | DOI
[4] E. C. Riley, G. Murphy, R. L. Riley, “Airborne spread of measles in a suburban elementary school”, American J. of Epidemiology, 107:5 (1978), 421–432 | DOI
[5] N. van Doremalen, T. Bushmaker, D. H. Morris et al, “Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1”, N. Engl. J. Med, 382 (2020), 1564–1567 | DOI
[6] Shadloo-Jahromi, O. Bavi, M. H. Heydari et al, “Dynamics of respiratory droplets carrying SARS-CoV-2 virus in closed atmosphere”, Results in Physics, 19 (2020), 103482 | DOI
[7] D. Helbing, I. Farkas, T. Vicsek, “Simulating dynamical features of escape panic”, Nature, 407 (2000), 487–490 | DOI
[8] R. Ramasamy, “Innate and adaptive immune responses in the upper respiratory tract and the infectivity of SARS-CoV-2”, Viruses, 14 (2022), 93 | DOI
[9] W. O. Kermack, A. G. McKendrick, “A contribution to the mathematical theory of epidemics”, Proc. Roy. Soc. A: Math., Phys. Eng. Sci, 115:772 (1927), 700–721
[10] A. M. Elaiw, A. D. Al Agha, “Global dynamics of SARS-CoV-2/cancer model with immune responses”, Applied Mathematics and Computation, 408:1 (2021), 126364 | DOI | MR | Zbl
[11] L. Vassallo, I. A. Perez, L. G. Alvarez-Zuzek et al, “An epidemic model for COVID-19 transmission in Argentina: Exploration of the alternating quarantine and massive testing strategies”, Math. Biosci., 346 (2022), 108664 | DOI | MR | Zbl
[12] J. Kucharski, T. W. Russell, C. Diamond et al, “Early dynamics of transmission and control of COVID-19: a mathematical modelling study”, Lancet Infect. Dis., 20 (2020), 553–558 | DOI
[13] I. V. Derevich, A. A. Panova, “Estimation of COVID-19 infection growth rate based on the imbedding method”, Journal of Engineering Physics and Thermophysics, 94:1 (2021), 18–29 | DOI
[14] A. N. Gerasimov, “The Dynamics of the Epidemic Process with the Antibiotic Resistant Variant of the Pathogen Agent”, Mathematical Models and Computer Simulations, 11:6 (2019), 884–893 | DOI | DOI | MR | Zbl
[15] D. Olabode, J. Culp, A. Fisher et al, “Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China”, Math. Biosciences and Eng, 18:1 (2021), 950–967 | DOI | MR | Zbl
[16] I. V. Derevich, A. A. Panova, “Stochastic model of the movement of a group of individuals in a space with boundaries taking into account their social behavior”, Mathematical Models and Computer Simulations, 15:6 (2023), 1084–1091 | DOI | DOI | MR | Zbl
[17] T. D. Frank, COVID-19 Epidemiology and virus dynamics. Nonlinear physics and mathematical modeling, Springer Nature, Switzerland AG, 2022, 355 pp. | DOI | MR | Zbl
[18] K. S. Kim, K. Ejima, S. Iwanami et al, “A quantitative model used to compare within-host SARS-CoV-2, MERS-CoV, and SARS-CoV dynamics provides insights into the pathogenesis and treatment of SARS-CoV-2”, PLoS Biol., 19:3 (2021), e3001128 | DOI
[19] S. Wang, M. Hao, Z. Pan, J. Lei, X. Zou, “Data-driven multi-scale mathematical modeling of SARS-CoV-2 infection reveals heterogeneity among COVID-19 patients”, PLoS Comput. Biol., 17:11 (2021), e1009587 | DOI | MR
[20] E. A. Hernandez-Vargas, J. X. Velasco-Hernandez, “In-host mathematical modelling of CO-VID-19 in humans”, Annual Reviews in Control, 50 (2020), 448–456 | DOI | MR
[21] V. Bernhauerová, B. Lisowski, V. Rezelj et al, “Mathematical modelling of SARS-CoV-2 infection of human and animal host cells reveals differences in the infection rates and delays in viral particle production by infected cells”, Journal of Theoretical Biology, 531 (2021), 110895 | DOI | MR | Zbl
[22] V. Ya. Kisselevskaya-Babinina, A.A. Romanyukha, T.E. Sannikova, “Mathematical Model of COVID-19 Progression: Prediction of Severity and Outcome”, Mathematical Models and Computer Simulations, 15:6 (2023), 987–998 | DOI | DOI | MR | Zbl
[23] S. Iwami, K. Sato, R. J. De Boer et al, “Identifying viral parameters from in vitro cell cultures”, Front. Microbiol., Sec. Virology, 3 (2012), 319 | DOI
[24] A. S. Perelson, A. U. Neumann, M. Markowitz et al, “HIV-1 Dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time”, Science, 271 (1996), 1582–1586 | DOI
[25] U. Neumann, N. P. Lam, H. Dahari et al, “Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-a therapy”, Science, 282 (1998), 103–107 | DOI
[26] R. M. Ribeiro, A. Lo, A. S. Perelson, “Dynamics of hepatitis B virus infection”, Microbes and Infection, 4:8 (2002), 829–835 | DOI
[27] Y. Tan, Y. Cai, Z. Peng et al, “Dynamics of a stochastic HBV infection model with drug therapy and immune response”, Math. Biosciences and Eng, 19:8 (2022), 7570–7585 | DOI | MR | Zbl
[28] R. Ke, C. Zitzmann, D. D. Ho et al, “In vivo kinetics of SARS-CoV-2 infection and its relationship with a person's infectiousness”, PNAS, 118 (2021), e2111477118, 49 | DOI | MR
[29] D. Grebennikov, E. Kholodareva, I. Sazonov et al, “Intracellular Life Cycle Kinetics of SARS-CoV-2 Predicted Using Mathematical Modelling”, Viruses, 13 (2021), 1735 | DOI
[30] A. Perelson, “Modelling viral and immune system dynamics”, Nat. Rev. Immunol, 2 (2002), 28–36 | DOI
[31] A. S. Perelson, “Immunology for physicists”, Reviews of Modern Physics, 9:4 (1997), 1219–1267 | DOI
[32] G. Altan-Bonnet, T. Mora, A. M. Walczak, “Quantitative immunology for physicists”, Phys. Rep, 849 (2020), 1–83 | DOI | MR | Zbl
[33] S. Q. Du, W. Yuan, “Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis”, J. Med. Virol, 92 (2020), 1615–1628 | DOI
[34] A. Gonçalves, O. Terrier, J. Bertrand et al, “Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load”, CPT Pharmacometrics Syst. Pharmacol, 9 (2020), 509–514 | DOI
[35] S. Iwanami, K. Ejima, K. S. Kim et al, “Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study”, PLoS Med., 18:7 (2021), e1003660 | DOI
[36] Z. Zhou, D. Li, Z. Zhao et al, “Dynamical modelling of viral infection and cooperative immune protection in COVID-19 patients”, PLoS Comput. Biol., 19:9 (2023), e1011383 | DOI
[37] R. Ramasamy, “Innate and adaptive immune responses in the upper respiratory tract and the infectivity of SARS-CoV-2”, Viruses, 14 (2022), 933 | DOI
[38] R. Wölfel, V. M. Corman, W. Guggemos et al, “Virological assessment of hospitalized patients with COVID-2019”, Nature, 581 (2020), 465–469 | DOI