Modeling the spread of viral infection in a local atmosphere infected with SARS-COV-2 virus. Constant virion concentration
Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 67-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of human infection with COVID-19 virus by absorption of virions from the local atmosphere is presented. The standard cellular model includes new terms that account for initial immunity and the flux of pathogen microparticles from the environment into the organism. It is shown that immunity reduces the degree of invasion of body cells and increases the time interval between the onset of infection and the explosive increase in the concentration of pathogenic microparticles. The results of calculations using the modified model are compared with experimental data of time dependence of virus concentration in the organism of infected patients. At the initial stage of infection, an analytical solution describing the growth of the pathogen concentration at a constant flux of virions from the atmosphere was found. The existence of a critical initial concentration of virions in the organism, exceeding which leads to an intensive increase in the concentration of virions, has been established. When the initial concentration of virions becomes less than a critical value, the virus in the organism degenerates. The critical initial concentration of virions in the organism rises with increasing degree of immunity. The critical value of the constant flux of virions from the atmosphere, exceeding which leads to an irreversible increase in the concentration of pathogenic cells, has been found. If the value of virion flux is less than a critical value, a constant concentration of pathogen microparticles is established in the organism.
Keywords: COVID-19 cell model, infected organism cell concentration, initial immunity
Mots-clés : pathogen microparticle concentration, target organism cell concentration, virion flux.
@article{MM_2024_36_3_a4,
     author = {I. V. Derevich and A. A. Panova},
     title = {Modeling the spread of viral infection in a local atmosphere infected with {SARS-COV-2} virus. {Constant} virion concentration},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {67--86},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_3_a4/}
}
TY  - JOUR
AU  - I. V. Derevich
AU  - A. A. Panova
TI  - Modeling the spread of viral infection in a local atmosphere infected with SARS-COV-2 virus. Constant virion concentration
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 67
EP  - 86
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_3_a4/
LA  - ru
ID  - MM_2024_36_3_a4
ER  - 
%0 Journal Article
%A I. V. Derevich
%A A. A. Panova
%T Modeling the spread of viral infection in a local atmosphere infected with SARS-COV-2 virus. Constant virion concentration
%J Matematičeskoe modelirovanie
%D 2024
%P 67-86
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_3_a4/
%G ru
%F MM_2024_36_3_a4
I. V. Derevich; A. A. Panova. Modeling the spread of viral infection in a local atmosphere infected with SARS-COV-2 virus. Constant virion concentration. Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 67-86. http://geodesic.mathdoc.fr/item/MM_2024_36_3_a4/

[1] W. J. Wiersinga, A. Rhodes, A. Cheng, et al, “Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19) A Review”, JAMA, 324:8 (2020), 782–793 | DOI

[2] E. Hartenian, D. Nandakumar, A. Lari, et. al., “The molecular virology of coronaviruses”, J. Biol. Chem, 11:295 (37) (2020), 12910–12934 | DOI

[3] J. A. Müller, R. Groß, C. Conzelmann et al, “SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas”, Nat. Metab., 3 (2021), 149–165 | DOI

[4] E. C. Riley, G. Murphy, R. L. Riley, “Airborne spread of measles in a suburban elementary school”, American J. of Epidemiology, 107:5 (1978), 421–432 | DOI

[5] N. van Doremalen, T. Bushmaker, D. H. Morris et al, “Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1”, N. Engl. J. Med, 382 (2020), 1564–1567 | DOI

[6] Shadloo-Jahromi, O. Bavi, M. H. Heydari et al, “Dynamics of respiratory droplets carrying SARS-CoV-2 virus in closed atmosphere”, Results in Physics, 19 (2020), 103482 | DOI

[7] D. Helbing, I. Farkas, T. Vicsek, “Simulating dynamical features of escape panic”, Nature, 407 (2000), 487–490 | DOI

[8] R. Ramasamy, “Innate and adaptive immune responses in the upper respiratory tract and the infectivity of SARS-CoV-2”, Viruses, 14 (2022), 93 | DOI

[9] W. O. Kermack, A. G. McKendrick, “A contribution to the mathematical theory of epidemics”, Proc. Roy. Soc. A: Math., Phys. Eng. Sci, 115:772 (1927), 700–721

[10] A. M. Elaiw, A. D. Al Agha, “Global dynamics of SARS-CoV-2/cancer model with immune responses”, Applied Mathematics and Computation, 408:1 (2021), 126364 | DOI | MR | Zbl

[11] L. Vassallo, I. A. Perez, L. G. Alvarez-Zuzek et al, “An epidemic model for COVID-19 transmission in Argentina: Exploration of the alternating quarantine and massive testing strategies”, Math. Biosci., 346 (2022), 108664 | DOI | MR | Zbl

[12] J. Kucharski, T. W. Russell, C. Diamond et al, “Early dynamics of transmission and control of COVID-19: a mathematical modelling study”, Lancet Infect. Dis., 20 (2020), 553–558 | DOI

[13] I. V. Derevich, A. A. Panova, “Estimation of COVID-19 infection growth rate based on the imbedding method”, Journal of Engineering Physics and Thermophysics, 94:1 (2021), 18–29 | DOI

[14] A. N. Gerasimov, “The Dynamics of the Epidemic Process with the Antibiotic Resistant Variant of the Pathogen Agent”, Mathematical Models and Computer Simulations, 11:6 (2019), 884–893 | DOI | DOI | MR | Zbl

[15] D. Olabode, J. Culp, A. Fisher et al, “Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China”, Math. Biosciences and Eng, 18:1 (2021), 950–967 | DOI | MR | Zbl

[16] I. V. Derevich, A. A. Panova, “Stochastic model of the movement of a group of individuals in a space with boundaries taking into account their social behavior”, Mathematical Models and Computer Simulations, 15:6 (2023), 1084–1091 | DOI | DOI | MR | Zbl

[17] T. D. Frank, COVID-19 Epidemiology and virus dynamics. Nonlinear physics and mathematical modeling, Springer Nature, Switzerland AG, 2022, 355 pp. | DOI | MR | Zbl

[18] K. S. Kim, K. Ejima, S. Iwanami et al, “A quantitative model used to compare within-host SARS-CoV-2, MERS-CoV, and SARS-CoV dynamics provides insights into the pathogenesis and treatment of SARS-CoV-2”, PLoS Biol., 19:3 (2021), e3001128 | DOI

[19] S. Wang, M. Hao, Z. Pan, J. Lei, X. Zou, “Data-driven multi-scale mathematical modeling of SARS-CoV-2 infection reveals heterogeneity among COVID-19 patients”, PLoS Comput. Biol., 17:11 (2021), e1009587 | DOI | MR

[20] E. A. Hernandez-Vargas, J. X. Velasco-Hernandez, “In-host mathematical modelling of CO-VID-19 in humans”, Annual Reviews in Control, 50 (2020), 448–456 | DOI | MR

[21] V. Bernhauerová, B. Lisowski, V. Rezelj et al, “Mathematical modelling of SARS-CoV-2 infection of human and animal host cells reveals differences in the infection rates and delays in viral particle production by infected cells”, Journal of Theoretical Biology, 531 (2021), 110895 | DOI | MR | Zbl

[22] V. Ya. Kisselevskaya-Babinina, A.A. Romanyukha, T.E. Sannikova, “Mathematical Model of COVID-19 Progression: Prediction of Severity and Outcome”, Mathematical Models and Computer Simulations, 15:6 (2023), 987–998 | DOI | DOI | MR | Zbl

[23] S. Iwami, K. Sato, R. J. De Boer et al, “Identifying viral parameters from in vitro cell cultures”, Front. Microbiol., Sec. Virology, 3 (2012), 319 | DOI

[24] A. S. Perelson, A. U. Neumann, M. Markowitz et al, “HIV-1 Dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time”, Science, 271 (1996), 1582–1586 | DOI

[25] U. Neumann, N. P. Lam, H. Dahari et al, “Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-a therapy”, Science, 282 (1998), 103–107 | DOI

[26] R. M. Ribeiro, A. Lo, A. S. Perelson, “Dynamics of hepatitis B virus infection”, Microbes and Infection, 4:8 (2002), 829–835 | DOI

[27] Y. Tan, Y. Cai, Z. Peng et al, “Dynamics of a stochastic HBV infection model with drug therapy and immune response”, Math. Biosciences and Eng, 19:8 (2022), 7570–7585 | DOI | MR | Zbl

[28] R. Ke, C. Zitzmann, D. D. Ho et al, “In vivo kinetics of SARS-CoV-2 infection and its relationship with a person's infectiousness”, PNAS, 118 (2021), e2111477118, 49 | DOI | MR

[29] D. Grebennikov, E. Kholodareva, I. Sazonov et al, “Intracellular Life Cycle Kinetics of SARS-CoV-2 Predicted Using Mathematical Modelling”, Viruses, 13 (2021), 1735 | DOI

[30] A. Perelson, “Modelling viral and immune system dynamics”, Nat. Rev. Immunol, 2 (2002), 28–36 | DOI

[31] A. S. Perelson, “Immunology for physicists”, Reviews of Modern Physics, 9:4 (1997), 1219–1267 | DOI

[32] G. Altan-Bonnet, T. Mora, A. M. Walczak, “Quantitative immunology for physicists”, Phys. Rep, 849 (2020), 1–83 | DOI | MR | Zbl

[33] S. Q. Du, W. Yuan, “Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis”, J. Med. Virol, 92 (2020), 1615–1628 | DOI

[34] A. Gonçalves, O. Terrier, J. Bertrand et al, “Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load”, CPT Pharmacometrics Syst. Pharmacol, 9 (2020), 509–514 | DOI

[35] S. Iwanami, K. Ejima, K. S. Kim et al, “Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study”, PLoS Med., 18:7 (2021), e1003660 | DOI

[36] Z. Zhou, D. Li, Z. Zhao et al, “Dynamical modelling of viral infection and cooperative immune protection in COVID-19 patients”, PLoS Comput. Biol., 19:9 (2023), e1011383 | DOI

[37] R. Ramasamy, “Innate and adaptive immune responses in the upper respiratory tract and the infectivity of SARS-CoV-2”, Viruses, 14 (2022), 933 | DOI

[38] R. Wölfel, V. M. Corman, W. Guggemos et al, “Virological assessment of hospitalized patients with COVID-2019”, Nature, 581 (2020), 465–469 | DOI