About the influence of accounting the energy equation on the formation model of a large-scale vortical flow in the accreting envelope of a protostar
Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 35-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the development of magnetorotation instability (MRI) in the accreting envelope of a protostar in the non-isothermal case, i.e. taking into account the energy equation, by RKDG method with a second order of an approximation using the parallel algorithm with MPI technology. It is shown that taking into account the energy equation in the general system of MHD equations does not significantly affect the modelling of the formation and the evolution of a large-scale turbulence structure, which leads to the removal of angular momentum to the periphery of the envelope and, as a consequence, to an increase in the rate of accretion to the protostar. The simulation results are compared qualitatively with observations of the star formation region G31.41+0.31 and other observations.
Keywords: MRI, simulation of MHD-instability, angular momentum transfer, accretion.
@article{MM_2024_36_3_a2,
     author = {A. Yu. Lugovsky and V. V. Lukin},
     title = {About the influence of accounting the energy equation on the formation model of a large-scale vortical flow in the accreting envelope of a protostar},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {35--50},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_3_a2/}
}
TY  - JOUR
AU  - A. Yu. Lugovsky
AU  - V. V. Lukin
TI  - About the influence of accounting the energy equation on the formation model of a large-scale vortical flow in the accreting envelope of a protostar
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 35
EP  - 50
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_3_a2/
LA  - ru
ID  - MM_2024_36_3_a2
ER  - 
%0 Journal Article
%A A. Yu. Lugovsky
%A V. V. Lukin
%T About the influence of accounting the energy equation on the formation model of a large-scale vortical flow in the accreting envelope of a protostar
%J Matematičeskoe modelirovanie
%D 2024
%P 35-50
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_3_a2/
%G ru
%F MM_2024_36_3_a2
A. Yu. Lugovsky; V. V. Lukin. About the influence of accounting the energy equation on the formation model of a large-scale vortical flow in the accreting envelope of a protostar. Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 35-50. http://geodesic.mathdoc.fr/item/MM_2024_36_3_a2/

[1] J. M. Girart, M. T. Beltran, Q. Zhang et al, “Magnetic fields in the formation of massive stars”, Science, 324:5933 (2009), 1408–1411 | DOI

[2] N. I. Shakura, “Disk model of gas accretion on a relativistic star in a close binary system”, Soviet Astronomy, 16:5 (1973), 756–762

[3] N. I. Shakura, R. A. Syunyaev, “Black holes in binary systems. Observational appearance”, Astron. and Astrophys, 24 (1973), 337–355

[4] Ye. P. Velikhov, A. Yu. Lugovsky, S. I. Mukhin, Yu. P. Popov, V. M. Chechetkin, “The impact of large-scale turbulence on the redistribution of angular momentum in stellar accretion disks”, Astronomy Reports, 51:2 (2007), 154–160 | DOI

[5] A. Yu. Lugovsky, S. I. Mukhin, Yu. P. Popov, V. M. Chechetkin, “The development of large-scale instability in stellar accretion disks and its influence on the redistribution of angular momentum”, Astronomy Reports, 52:10 (2008), 811–814 | DOI

[6] A. Yu. Lugovskii, V. M. Chechetkin, “The development of large-scale instability in Keplerian stellar accretion disks”, Astronomy Reports, 56:2 (2012), 96–103 | DOI

[7] E. P. Velikhov, “Stability of an Ideally Conducting Liquid Flowing Between Cylinders Rotating in a Magnetic Field”, Soviet Physics JETP, 36 (1959), 995–998 | MR

[8] S. A. Balbus, J. F. Hawley, “A Powerful Local Shear Instability in Weakly Magnetized Disks: I. Linear Analysis”, Astrophysical Journal, 376 (1991), 214–222 | DOI

[9] E. P. Velikhov, K. R. Sychugov, V. M. Chechetkin, A. Yu. Lugovskii, A. V. Koldoba, “Magneto-rotational Instability in the Accreting Envelope of a Protostar and the Formation of the Large-Scale Magnetic Field”, Astronomy Rep, 56 (2012), 84–95 | DOI

[10] V. V. Lukin, K. L. Shapovalov, “Primenenie RKDG metoda vtorogo poriadka dlia resheniia dvumernykh uravnenii idealnoi magnitnoi gidrodinamiki”, Vestnik MGTU im. N.E. Baumana. Estestv. Nauki, 2012, spets. vyp. 2 «Matem. modelirov. v tekhnike», 98–108

[11] M. P. Galanin, V. V. Lukin, K. L. Shapovalov, “Parallelnii algoritm RKDG metoda vtorogo poriadka dlia resheniia dvumernykh uravnenii idealnoi magnitnoi gidrodinamiki”, Parallelnye vychislitelnye tekhnologii (PaVT'2013), trudy vezhdunarodnoi nauchnoi konf. (1-5 aprelia 2013, Cheliabinsk), Izd. tsentr IUUrGU, Cheliabinsk, 2013, 116–126

[12] A. G. Morozov, A. V. Khoperskov, Fizika diskov, Izd-vo VolGU, Volgograd, 2005, 422 pp.

[13] N. I. Shakura, K. A. Postnov, G. V. Lipunova et al, Akkretsionnye protsessy v astrofizike, Fizmatlit, M., 2016, 416 pp.

[14] Q. Zhang, K. Qiu, J. M. Girart et al, “Magnetic Fields and Massive Star Formation”, The Astrophysical Journal, 792:2 (2014), 116, 12 pp. | DOI

[15] K. Qiu, Q. Zhang, K. M. Menten et al, “Submillimeter Array Observations of Magnetic Fields in G240.31+0.07: An Hourglass in a Massive Cluster-forming Core”, The Astrophysical Journal Letters, 794:1 (2014), L18, 6 pp. | DOI

[16] M. P. Galanin, V. V. Lukin, “Providing the divergence-free property of the magnetic field when solving the MHD equations by the RKDG method”, CM, 55:8 (2015), 1298–1309 | MR | Zbl

[17] T. Miyoshi, K. Kusano, “A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics”, Journal of Computational Physics, 208:1 (2005), 315–344 | DOI | MR | Zbl

[18] V. V. Lukin, V. N. Korchagova, S. M. Sautkina, “On Stable Runge-Kutta Methods for Solving Hyperbolic Equations by the Discontinuous Galerkin Method”, Differential Equations, 57:7 (2021), 921–933 | DOI | DOI | MR | Zbl