Use of phenomenological model of turbulence to study the material separation effect under alternate acceleration
Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 162-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes the use of a phenomenological model of anisotropic turbulence for studying the turbulence development in the gravity field on the plane interface between two incompressible fluids (gases) with density ratio $\rho2/\rho1=3$. The case, when at some time the acceleration changes its sign, is considered. The calculated results are compared to the $\mathrm{3D}$ results of the direct numerical simulation with CFD code TREC and the corresponding experimental data.
Keywords: turbulent mixing, Rayleigh-Taylor instability, alternate acceleration, numerical simulation, phenomenological model.
@article{MM_2024_36_3_a10,
     author = {V. P. Statsenko and Yu. V. Yanilkin},
     title = {Use of phenomenological model of turbulence to study the material separation effect under alternate acceleration},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {162--180},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_3_a10/}
}
TY  - JOUR
AU  - V. P. Statsenko
AU  - Yu. V. Yanilkin
TI  - Use of phenomenological model of turbulence to study the material separation effect under alternate acceleration
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 162
EP  - 180
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_3_a10/
LA  - ru
ID  - MM_2024_36_3_a10
ER  - 
%0 Journal Article
%A V. P. Statsenko
%A Yu. V. Yanilkin
%T Use of phenomenological model of turbulence to study the material separation effect under alternate acceleration
%J Matematičeskoe modelirovanie
%D 2024
%P 162-180
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_3_a10/
%G ru
%F MM_2024_36_3_a10
V. P. Statsenko; Yu. V. Yanilkin. Use of phenomenological model of turbulence to study the material separation effect under alternate acceleration. Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 162-180. http://geodesic.mathdoc.fr/item/MM_2024_36_3_a10/

[1] Yu. A. Kucherenko, V. E. Neuvazhaev, A. P. Pylaev, “Behaviour of gravitational turbulent mixing region under conditions leading to separation”, 4rd Int. Workshop on the physics of compressible turbulent mixing (Cambridge, England, 1993), 70–80

[2] Y. A. Kucherenko, S. I. Balabin, R. I. Ardashova et al., “Determination of Space and Time Distributions of the Averaged Density of Substance in the Turbulized Mixture Region at the Stage of Separation”, 6th Int. Workshop on the physics of compressible turbulent mixing (Marseille, France, 1997), 258–265

[3] V. E. Neuvazhaev, “Svoistva modeli turbulentnogo peremeshivaniia, osnovannoi na dvukhkomponentnoi dvukhskorostnoi modeli. Separatsionnaia dobavka v diffuzionnykh modeliakh”, Matematicheskoe modelirovanie, 1995, no. 7, 3–18 | MR | Zbl

[4] D. L. Youngs, “Variable acceleration Rayleigh-Taylor mixing”, 6th International Workshop on the physics of compressible turbulent mixing (Marseille, France, 1997), 534–538

[5] Z. Zhang, J. Wang, “Numerical Simulation Raylegh-Teylor instability with the simplified Reynolds Stress Model”, 6th International Workshop on the physics of compressible turbulent mixing (Marseille, France, 1997), 569–574

[6] V. A. Zhmailo, O. G. Sin'kova, V. N. Sofronov et al, “Numerical investigation of gravitational turbulent mixing with alternating-sign acceleration”, Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing, Cambridge (UK), 2004

[7] Yu. V. Yanilkin, V. I. Tarasov, A. L. Stadnik et al, “Program System TREK for Numerical Simulation of 3D Multicomponent Medium Flows”, Proc. of workshop «New Models and Numerical Codes for Shock Wave Processes in Condensed Media» (Oxford, 1997), 413–422

[8] V. P. Statsenko, “Testirovanie modeli turbulentnosti s anizotropiei tenzora Reynoldsa”, VANT, ser. TPF, 1996, no. 3

[9] Iu. V. Ianilkin, V. P. Statsenko, V. I. Kozlov, Matematicheskoe modelirovanie turbulentnogo peremeshivaniia v szhimaemykh sredakh, Kurs lektsii, v. 1, Izdatelstvo FGUP RFIaTs-VNIIEF, Sarov, 2019

[10] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, v. 6, Fluid Mechanics, 2nd ed., 1987, 539 pp. | MR

[11] L. D. Landau, E. M. Lifshitz, Part 1, v. 5, Statistical Physics, 3rd ed., 1980, 544 pp. | MR