Signal processing of distributed optoacoustic sensors by means of neural networks in the automotive transport monitoring problem
Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 20-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Neural network models are used as a tool for an automotive transport monitoring. The solution of the problem of recognition of distributed optoacoustic sensor signals generated by vehicles using neural networks is considered. Signals features and signals preliminary processing are described. The neural network architecture for the vehicles generated signals recognition is selected. The architecture of the network of vehicles signal recognition, including heavy tracks signals, has single layer with two hundred and one input and one or two outputs. The neural network can be built with the Python programming language and Scikit-Learn, Keras and NumPy libraries. The network training images, the training results and the trained network practical application are described. The recommendations for further research in the field of using neural networks of various architectures for recognizing vehicle signals using distributed optoacoustic sensors are given. The study results are important for road traffic monitoring, as well as other areas of the distributed optoacoustic sensor applications.
Keywords: artificial neural networks, machine learning, big data space dimensionality reduction, pattern recognition, training patterns, backpropagation algorithm, Python, Keras, TensorFlow.
Mots-clés : perceptron
@article{MM_2024_36_3_a1,
     author = {P. A. Nazarenko and S. P. Levashkin and O. I. Zakharova and K. N. Ivanov and S. V. Kushukov},
     title = {Signal processing of distributed optoacoustic sensors by means of neural networks in the automotive transport monitoring problem},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {20--34},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_3_a1/}
}
TY  - JOUR
AU  - P. A. Nazarenko
AU  - S. P. Levashkin
AU  - O. I. Zakharova
AU  - K. N. Ivanov
AU  - S. V. Kushukov
TI  - Signal processing of distributed optoacoustic sensors by means of neural networks in the automotive transport monitoring problem
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 20
EP  - 34
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_3_a1/
LA  - ru
ID  - MM_2024_36_3_a1
ER  - 
%0 Journal Article
%A P. A. Nazarenko
%A S. P. Levashkin
%A O. I. Zakharova
%A K. N. Ivanov
%A S. V. Kushukov
%T Signal processing of distributed optoacoustic sensors by means of neural networks in the automotive transport monitoring problem
%J Matematičeskoe modelirovanie
%D 2024
%P 20-34
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_3_a1/
%G ru
%F MM_2024_36_3_a1
P. A. Nazarenko; S. P. Levashkin; O. I. Zakharova; K. N. Ivanov; S. V. Kushukov. Signal processing of distributed optoacoustic sensors by means of neural networks in the automotive transport monitoring problem. Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 20-34. http://geodesic.mathdoc.fr/item/MM_2024_36_3_a1/

[1] M. A. Bukharin, K. V. Shishkov, “Tekhnologii vibroakusticheskogo monitoringa dlia nuzhd zheleznodorozhnogo transporta”, Zheleznodorozhny Transport, 2020, no. 4, 58–59

[2] M. A. Bukharin, S. V. Prokopenko, K. V. Gurtovoy, S. A. Skubchenko, V. N. Treshikov, “Pozitsi-onirovanie podvizhnogo sostava s ispolzovaniem neironnykh setei”, Avtomatika, sviaz, informatika, 2019, no. 9, 8–10

[3] S. Kowarik, M. T. Hussels, S. Chruscicki, S. Münzenberger, A. Lämmerhirt, P. Pohl, M. Schubert, “Fiber Optic Train Monitoring with Distributed Acoustic Sensing: Conventional and Neural Network Data Analysis”, Sensors, 20:2 (2020), 450 | DOI

[4] Bezopastnost obiektov transportnoi infrastruktury, https://t8-sensor.ru/transportation

[5] L. Bykerk, J. Valls Miro, “Vibro-Acoustic Distributed Sensing for Large-Scale Data-Driven Leak Detection on Urban Distribution Mains”, Sensors, 22:18 (2022), 6897 | DOI

[6] Y. Sun, H. Li, C. Fan, B. Yan, J. Chen, Z. Yan, Q. Sun, “Review of a Specialty Fiber for Distributed Acoustic Sensing Technology”, Photonics, 9:5 (2022), 277 | DOI

[7] I. N. Alekhin, A. Yu. Barashkin, A. V. Burdin, V. A. Burdin, S. A. Gavriushin, M. V. Dashkov, A. S. Evtushenko, S. G. Teleshevski, “Ispytatelnyi poligon dlia testirovaniia metodov lokalizatsii trass volokonno-opticheskikh linii sviazi”, Infokommunikats. tekhnologii, 20:1 (2022), 18–26

[8] V. V. Sapozhnikov, V. V. Sapozhnikov, D. V. Efanov, Osnovy teorii nadezhnosti i tekhnicheskoy diagnostiki, Lan, SPb., 2019, 588 pp.

[9] W. B. Lyons, E. Lewis, “Neural networks and pattern recognition techniques applied to optical fibre sensors”, Transactions of the Institute of Measurement and Control, 22:5 (2000), 385–404 | DOI

[10] P. D. Wasserman, Neural Computing: Theory and Practice, Coriolis Group, 1989, 230 pp.

[11] Scikit-learn. Machine Learning in Python, https://scikit-learn.org/stable/index.html

[12] Neural network models (unsupervised). Restricted Boltzmann machines, https://scikit-learn.org/stable/modules/neural_networks_unsupervised.html

[13] Keras. Layer activation functions, https://keras.io/api/layers/activations/

[14] S. Nikolenko, A. Kadurin, E. Arkhangelskaya, Glubokoe obuchenie, Piter, SPb., 2018, 480 pp.