Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_3_a0, author = {N. G. Burago and I. S. Nikitin and A. D. Nikitin and B. A. Stratula}, title = {Numerical modeling of fatigue fracture based on the nonlocal theory of cyclic damage}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--19}, publisher = {mathdoc}, volume = {36}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_3_a0/} }
TY - JOUR AU - N. G. Burago AU - I. S. Nikitin AU - A. D. Nikitin AU - B. A. Stratula TI - Numerical modeling of fatigue fracture based on the nonlocal theory of cyclic damage JO - Matematičeskoe modelirovanie PY - 2024 SP - 3 EP - 19 VL - 36 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2024_36_3_a0/ LA - ru ID - MM_2024_36_3_a0 ER -
%0 Journal Article %A N. G. Burago %A I. S. Nikitin %A A. D. Nikitin %A B. A. Stratula %T Numerical modeling of fatigue fracture based on the nonlocal theory of cyclic damage %J Matematičeskoe modelirovanie %D 2024 %P 3-19 %V 36 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2024_36_3_a0/ %G ru %F MM_2024_36_3_a0
N. G. Burago; I. S. Nikitin; A. D. Nikitin; B. A. Stratula. Numerical modeling of fatigue fracture based on the nonlocal theory of cyclic damage. Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2024_36_3_a0/
[1] Yu. N. Rabotnov, “O mekhanizme dlitelnogo razrusheniia. Voprosyi prochnosti materialov i konstruktsij”, Izv. AN SSSR OTN, 1959, 5–7
[2] L. M. Kachanov, “O vremeni razrusheniia v usloviiakh polzuchesti”, Izv. AN SSSR OTN, 1958, 26–31 | Zbl
[3] J. Lemaitre, J. L. Chaboche, Mechanics of solid materials, Cambridge University Press, Cambridge, 1994, 584 pp.
[4] S. Murakami, Continuum Damage Mechanics. A Continuum Mechanics Approach to the Analysis of Damage and Fracture, Springer, Dordrecht, 2012 | DOI
[5] D. Krajcinovic, Damage Mechanics, Elsevier Science, Amsterdam, 1996, 774 pp.
[6] J. Oliver, “Continuum modeling of strong discontinuities in solid mechanics using damage models”, Comput. Mech., 17 (1999), 49–61 | DOI
[7] G. Z. Voyiadjis, P. I. Kattan, Advances in Damage Mechanics: Metals and Metal Matrix Composites, Elsevier, Amsterdam, 1999, 556 pp. | Zbl
[8] N. G. Burago, “Modelirovanie razrusheniya uprugoplasticheskikh tel”, Vychislitel'naya mekhanika sploshnykh sred, 1:4 (2008), 5–20 | DOI | MR
[9] I. S. Nikitin, N. G. Burago, A. B. Zhuravlev, A. D. Nikitin, “Multi-mode model for fatigue damage development”, Mechanics of Solids, 55:8 (2020), 298–306 | DOI
[10] I. S. Nikitin, N. G. Burago, A. D. Nikitin, “Damage and Fatigue Fracture of Structural Elements in Various Cyclic Loading Modes”, Mechanics of Solids, 57:7 (2022), 1793–1803 | DOI | Zbl
[11] V. N. Shlyannikov, “Creep-Fatigue crack growth rate prediction based on fracture damage zones models”, Eng. Fracture Mechanics, 214 (2019), 449–463 | DOI
[12] D. S. Petukhov, I. E. Keller, “Evolutionary Model of Fatigue Fracture Under Irregular Loading”, Mech. Solids, 57:2 (2022), 263–270 | DOI | Zbl
[13] A.V. Tumanov, “Modification of the Lemaitre damage model by a local multiaxial stress state function”, Physical Mesomech., 26:5 (2023), 573–580 | DOI | DOI
[14] O. Plekhov, O. Naimark et al, “The study of a defect evolution in iron under fatigue loading in gigacycle fatigue regime”, Frattura ed Integrita Strutturale, 10:35 (2016), 414–423 | DOI
[15] W. Schütz, “A history of fatigue”, Engineering Fracture Mechanics, 54:2 (1996), 263–300 | DOI
[16] C. Bathias, P. Paris, Gigacycle fatigue in mechanical practice, Dekker, New-York, 2004, 328 pp. | DOI
[17] C. Bathias, L. Drouillac, P. Le François, “How and why the fatigue S-N curve does not approach a horizontal asymptote”, International Journal of Fatigue, 23:1 (2001), 143–151 | DOI
[18] A. A. Shanyavskiy, A. P. Soldatenkov, “The fatigue limit of metals as a characteristic of the multimodal fatigue life distribution for structural materials”, Procedia Structural Integrity, 23:8-9 (2011), 63–68 | DOI
[19] O. H. Basquin, “The exponential law of endurance tests”, Proc. of the American society for testing and material, 10:14 (1910), 625–630
[20] N. G. Burago, A. B. Zhuravlev, I. S. Nikitin, V. L. Yakushev, “A study of different modes of fatigue fracture and durability estimation for compressor disks of gas-turbine engine”, Math. Mod. Comp. Simul., 8:5 (2016), 523–532 | DOI
[21] R. N. Smith, P. Watson, T. H. Topper, “A stress-strain parameter for the fatigue of metals”, J. of Materials, 5 (1970), 767–78
[22] N. Gates, A. Fatemi, “Multiaxial variable amplitude fatigue life analysis including notch effects”, Int. J. of fatigue, 91:2 (2016), 337–351 | DOI
[23] A. Carpinteri, A. Spagnoli, S. Vantadori, “Multiaxial assessment using a simplified critical plane based criterion”, Int. J. of Fatigue, 33 (2011), 969–976 | DOI
[24] A. Nikitin, T. Palin-Luc, A. Shanyavskiy, “Crack initiation in VHCF regime on forged titanium alloy under tensile and torsion loading modes”, Int. J. of Fatigue, 93 (2016), 318–325 | DOI
[25] A. Nikitin, T. Palin-Luc, A. Shanyavskiy, C. Bathias, “Comparison of crack paths in a forged and extruded aeronautical titanium alloy loaded in torsion in the gigacycle fatigue regime”, Eng. Fracture Mechanics, 167 (2016), 259–272 | DOI
[26] N. G. Burago, I. S. Nikitin, A. D. Nikitin, B. A. Stratula, “Algorithms for calculation damage processes”, Frattura ed Integrità Strutturale, 49 (2019), 212–224 | DOI
[27] P. C. Paris, F. Erdogan, “A critical analysis of crack propagation laws”, J. of Basic Eng. ASME Transactions, Ser. D, 85:4 (1963), 528–534 | DOI
[28] M. Jirasek, “Nonlocal models for damage and fracture: comparison of approaches”, Int. J. Solids Structures, 35 (1998), 4133–4145 | DOI | MR | Zbl
[29] Z. P. Bažant, M. Jirásek, “Nonlocal integral formulations of plasticity and damage: Survey of progress”, J. Eng. Mech., 128 (2002), 1119–1149 | DOI
[30] A. V. Shutov, V. S. Klyuchantsev, “Large strain integral-based nonlocal simulation of ductile damage with application to mode-I fracture”, International J. of Plasticity, 144 (2021), 103061 | DOI
[31] A. K. Marmi, A. M. Habraken, L. Duchene, “Multiaxial fatigue damage modelling at macro scale of Ti6Al4V alloy”, Int. J. of fatigue, 31 (2009), 2031–40 | DOI