Numerical modeling of fatigue fracture based on the nonlocal theory of cyclic damage
Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on a multimode model of fatigue failure, a numerical method for calculating the kinetics of fracture, occurrence and development of fatigue “quasicracks” is proposed. For specimens with notches having different radii of curvature, processes of high-frequency cyclic tension-compression with different cycle asymmetry coefficients are considered. The convergence of numerical solutions for the processes of occurrence and development of quasicracks, as well as for durability, is ensured by the use of a nonlocal damage function near fracture zones. Computational experiments demonstrate the effectiveness of the developed numerical procedure. The results of calculations of fatigue failure are presented for various modes of cyclic loading with different cycle asymmetry coefficients and taking into account artificially caused defects.
Keywords: high-cycle fatigue, very-high-cycle fatigue, notched specimens, cyclic damage model, high-frequency tensile-compression tests, convergence of numerical solution, mesh refinement, non-local damage.
@article{MM_2024_36_3_a0,
     author = {N. G. Burago and I. S. Nikitin and A. D. Nikitin and B. A. Stratula},
     title = {Numerical modeling of fatigue fracture based on the nonlocal theory of cyclic damage},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_3_a0/}
}
TY  - JOUR
AU  - N. G. Burago
AU  - I. S. Nikitin
AU  - A. D. Nikitin
AU  - B. A. Stratula
TI  - Numerical modeling of fatigue fracture based on the nonlocal theory of cyclic damage
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 3
EP  - 19
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_3_a0/
LA  - ru
ID  - MM_2024_36_3_a0
ER  - 
%0 Journal Article
%A N. G. Burago
%A I. S. Nikitin
%A A. D. Nikitin
%A B. A. Stratula
%T Numerical modeling of fatigue fracture based on the nonlocal theory of cyclic damage
%J Matematičeskoe modelirovanie
%D 2024
%P 3-19
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_3_a0/
%G ru
%F MM_2024_36_3_a0
N. G. Burago; I. S. Nikitin; A. D. Nikitin; B. A. Stratula. Numerical modeling of fatigue fracture based on the nonlocal theory of cyclic damage. Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2024_36_3_a0/

[1] Yu. N. Rabotnov, “O mekhanizme dlitelnogo razrusheniia. Voprosyi prochnosti materialov i konstruktsij”, Izv. AN SSSR OTN, 1959, 5–7

[2] L. M. Kachanov, “O vremeni razrusheniia v usloviiakh polzuchesti”, Izv. AN SSSR OTN, 1958, 26–31 | Zbl

[3] J. Lemaitre, J. L. Chaboche, Mechanics of solid materials, Cambridge University Press, Cambridge, 1994, 584 pp.

[4] S. Murakami, Continuum Damage Mechanics. A Continuum Mechanics Approach to the Analysis of Damage and Fracture, Springer, Dordrecht, 2012 | DOI

[5] D. Krajcinovic, Damage Mechanics, Elsevier Science, Amsterdam, 1996, 774 pp.

[6] J. Oliver, “Continuum modeling of strong discontinuities in solid mechanics using damage models”, Comput. Mech., 17 (1999), 49–61 | DOI

[7] G. Z. Voyiadjis, P. I. Kattan, Advances in Damage Mechanics: Metals and Metal Matrix Composites, Elsevier, Amsterdam, 1999, 556 pp. | Zbl

[8] N. G. Burago, “Modelirovanie razrusheniya uprugoplasticheskikh tel”, Vychislitel'naya mekhanika sploshnykh sred, 1:4 (2008), 5–20 | DOI | MR

[9] I. S. Nikitin, N. G. Burago, A. B. Zhuravlev, A. D. Nikitin, “Multi-mode model for fatigue damage development”, Mechanics of Solids, 55:8 (2020), 298–306 | DOI

[10] I. S. Nikitin, N. G. Burago, A. D. Nikitin, “Damage and Fatigue Fracture of Structural Elements in Various Cyclic Loading Modes”, Mechanics of Solids, 57:7 (2022), 1793–1803 | DOI | Zbl

[11] V. N. Shlyannikov, “Creep-Fatigue crack growth rate prediction based on fracture damage zones models”, Eng. Fracture Mechanics, 214 (2019), 449–463 | DOI

[12] D. S. Petukhov, I. E. Keller, “Evolutionary Model of Fatigue Fracture Under Irregular Loading”, Mech. Solids, 57:2 (2022), 263–270 | DOI | Zbl

[13] A.V. Tumanov, “Modification of the Lemaitre damage model by a local multiaxial stress state function”, Physical Mesomech., 26:5 (2023), 573–580 | DOI | DOI

[14] O. Plekhov, O. Naimark et al, “The study of a defect evolution in iron under fatigue loading in gigacycle fatigue regime”, Frattura ed Integrita Strutturale, 10:35 (2016), 414–423 | DOI

[15] W. Schütz, “A history of fatigue”, Engineering Fracture Mechanics, 54:2 (1996), 263–300 | DOI

[16] C. Bathias, P. Paris, Gigacycle fatigue in mechanical practice, Dekker, New-York, 2004, 328 pp. | DOI

[17] C. Bathias, L. Drouillac, P. Le François, “How and why the fatigue S-N curve does not approach a horizontal asymptote”, International Journal of Fatigue, 23:1 (2001), 143–151 | DOI

[18] A. A. Shanyavskiy, A. P. Soldatenkov, “The fatigue limit of metals as a characteristic of the multimodal fatigue life distribution for structural materials”, Procedia Structural Integrity, 23:8-9 (2011), 63–68 | DOI

[19] O. H. Basquin, “The exponential law of endurance tests”, Proc. of the American society for testing and material, 10:14 (1910), 625–630

[20] N. G. Burago, A. B. Zhuravlev, I. S. Nikitin, V. L. Yakushev, “A study of different modes of fatigue fracture and durability estimation for compressor disks of gas-turbine engine”, Math. Mod. Comp. Simul., 8:5 (2016), 523–532 | DOI

[21] R. N. Smith, P. Watson, T. H. Topper, “A stress-strain parameter for the fatigue of metals”, J. of Materials, 5 (1970), 767–78

[22] N. Gates, A. Fatemi, “Multiaxial variable amplitude fatigue life analysis including notch effects”, Int. J. of fatigue, 91:2 (2016), 337–351 | DOI

[23] A. Carpinteri, A. Spagnoli, S. Vantadori, “Multiaxial assessment using a simplified critical plane based criterion”, Int. J. of Fatigue, 33 (2011), 969–976 | DOI

[24] A. Nikitin, T. Palin-Luc, A. Shanyavskiy, “Crack initiation in VHCF regime on forged titanium alloy under tensile and torsion loading modes”, Int. J. of Fatigue, 93 (2016), 318–325 | DOI

[25] A. Nikitin, T. Palin-Luc, A. Shanyavskiy, C. Bathias, “Comparison of crack paths in a forged and extruded aeronautical titanium alloy loaded in torsion in the gigacycle fatigue regime”, Eng. Fracture Mechanics, 167 (2016), 259–272 | DOI

[26] N. G. Burago, I. S. Nikitin, A. D. Nikitin, B. A. Stratula, “Algorithms for calculation damage processes”, Frattura ed Integrità Strutturale, 49 (2019), 212–224 | DOI

[27] P. C. Paris, F. Erdogan, “A critical analysis of crack propagation laws”, J. of Basic Eng. ASME Transactions, Ser. D, 85:4 (1963), 528–534 | DOI

[28] M. Jirasek, “Nonlocal models for damage and fracture: comparison of approaches”, Int. J. Solids Structures, 35 (1998), 4133–4145 | DOI | MR | Zbl

[29] Z. P. Bažant, M. Jirásek, “Nonlocal integral formulations of plasticity and damage: Survey of progress”, J. Eng. Mech., 128 (2002), 1119–1149 | DOI

[30] A. V. Shutov, V. S. Klyuchantsev, “Large strain integral-based nonlocal simulation of ductile damage with application to mode-I fracture”, International J. of Plasticity, 144 (2021), 103061 | DOI

[31] A. K. Marmi, A. M. Habraken, L. Duchene, “Multiaxial fatigue damage modelling at macro scale of Ti6Al4V alloy”, Int. J. of fatigue, 31 (2009), 2031–40 | DOI