Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_2_a9, author = {O. Yu. Milyukova}, title = {Some ways of parallel implementation of the conjugate gradient method with an implicit factorized preconditioner}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {174--196}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_2_a9/} }
TY - JOUR AU - O. Yu. Milyukova TI - Some ways of parallel implementation of the conjugate gradient method with an implicit factorized preconditioner JO - Matematičeskoe modelirovanie PY - 2024 SP - 174 EP - 196 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2024_36_2_a9/ LA - ru ID - MM_2024_36_2_a9 ER -
%0 Journal Article %A O. Yu. Milyukova %T Some ways of parallel implementation of the conjugate gradient method with an implicit factorized preconditioner %J Matematičeskoe modelirovanie %D 2024 %P 174-196 %V 36 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2024_36_2_a9/ %G ru %F MM_2024_36_2_a9
O. Yu. Milyukova. Some ways of parallel implementation of the conjugate gradient method with an implicit factorized preconditioner. Matematičeskoe modelirovanie, Tome 36 (2024) no. 2, pp. 174-196. http://geodesic.mathdoc.fr/item/MM_2024_36_2_a9/
[1] J. A. Meijering, H. A. van der Vorst, “An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix”, Math. Comp., 31 (1977), 148–162 | MR
[2] J. Ortega, Introduction to parallel and vector solution of linear systems, NY., 1988 | MR | Zbl
[3] I. S. Duff, G. A. Meurant, “The effect of ordering on preconditioned conjugate gradients”, BIT, 29 (1989), 625–657 | DOI | MR
[4] S. Doi, “On parallelism and convergence of incomplete LU factorizations”, Applied Numerical Mathematics: Transactions of IMACS, 7:5 (1991), 417–436 | DOI | MR | Zbl
[5] Y. Notay, “An efficient parallel discrete PDE solver”, Parallel Computing, 21 (1995), 1725–1748 | DOI | MR
[6] O. Yu. Milyukova, “Parallel approximate factorization method for solving discreate elliptic equations”, Parallel Computing, 27:10 (2001), 1365–1379 | DOI | MR | Zbl
[7] O. Yu. Milyukova, “Parallel Iterative Methods Using Factorized Preconditioning Matrices for Solving Elliptic Equations on Triangular Grids”, J. Comput. Math. Math. Phys., 46:6 (2006), 1044–1060 | DOI | MR
[8] D. Hysom, A. Pothen, “A scalable parallel algorithm for incomplete factor preconditioning”, SIAM J. Sci. Comput., 22:6 (2001), 2194–2215 | DOI | MR | Zbl
[9] M. Magolu Monga Made, H. A. van der Vorst, “Spectral analysis of parallel incomplete factorizations with implicit pseudo-overlap”, Num. Linear Algebra Appl, 9:1 (2002), 45–64 | DOI | MR | Zbl
[10] O. Yu. Milyukova, “Combination of Numerical and Structured Approaches to the Construction of a Second-Order Incomplete Triangular Factorization in Parallel Preconditioning Methods”, J. Comput. Math. Math. Phys., 56:5, 699–716 | DOI | DOI | MR | Zbl
[11] I. E. Kaporin, “High quality preconditionings of a general symmetric positive definite matrix based on its decomposition”, Numer. Lin. Alg. Appl., 5:6 (1998), 483–509 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[12] I. E. Kaporin, I. N. Kon'shin, “Parallel solution of symmetric positive definite systems based on decomposition into overlapping blocks”, Comput. Math. Math. Phys., 41:4 (2001), 481–493 | MR | Zbl
[13] I. E. Kaporin, O. Yu. Miliukova, Massivno-parallelnyi algoritm predobuslovlennogo metoda sopriazhennykh gradientov dlia chiclennogo resheniia system lineinykh algebraicheskikh uravnenii, Izd-vo VTs RAN, M., 2011, 132–157
[14] O. Yu. Milyukova, “MPI+OpenMP parallel implementation of conjugated gradient method with the IC(0) preconditioners of block incomplete inverse triangular decomposition of second and first order”, Proc. VANT, Ser.: Mat. Mod. Fiz., 2022, no. 1, 48–61 | DOI
[15] I. E. Kaporin, “New convergence results and preconditioning strategies for conjugate gradient method”, Numer. Linear Algebra and Appl., 1:2 (1994), 179–210 | DOI | MR | Zbl
[16] N. Munksgaard, “Solving sparse symmetric sets of linear equations by preconditioned conjugate gradients”, ACM Trans. Math. Software, 1980, no. 6, 206–219 | DOI | Zbl
[17] O. Yu. Milyukova, “MPI+OpenMPI realizatsiia metoda sopriazhennykh gradientov s faktorizovannym predobuslovlivatelem”, Keldysh Institute preprints, 2020, 031, 22 pp.
[18] O. Yu. Milyukova, “MPI+OpenMP Implementation of the Conjugated Gradient Method with Factorized Implicit Preconditioners”, MM, 14:3 (2022), 367–380 | MR
[19] O. Yu. Milyukova, “MPI+OpenMP realizatsiia metoda sopriazhennykh gradientov s predobuslovliteliami blochnogo nepolnogo obratnogo treugolnogo razlozheniia pervogo poriadka”, Vychislitel'nye Metody i Programmirovanie, 23:3 (2022), 191–206 | MR
[20] O. Yu. Milyukova, “Sposoby MPI+OpenMP realizatsii metoda sopriazhennykh gradientov s predobuslovlivatelem IC(0) na osnove ispolzovaniia pereuporiadocheniia uzlov setki”, Keldysh Institute preprints, 2023, 035, 32 pp.
[21] O. Yu. Milyukova, “MPI+OpenMP realizatsiia metoda sopriazhennykh gradientov s faktorizovannym predobuslovlivatelem na osnove ispolzovaniia pereuporiadocheniia uzlov setki”, Keldysh Institute preprints, 2023, 018, 29 pp.
[22] D. Kershow, “The Incomplete Choleski-conjugate gradient method for the iterative solution of systems of linear equations”, J. Comp. Phys., 26 (1978), 43–65 | DOI | MR
[23] I. E. Kaporin, O. Yu. Milyukova, “Nepolnoe obratnoe treugolnoe razlozhenie v parallelnykh algoritmakh predobuslovlennogo metoda sopriazhennykh gradientov”, Keldysh Institute preprints, 2017, 037, 28 pp.
[24] T. Davis, Y. F. Hu, “University of Florida sparse matrix collection”, ACM Trans. on Math. Software, 38:1 (2011) | MR
[25] O. Axelsson, Iterative solution methods, Cambridge Univ. Press, New York, 1994 | MR | Zbl
[26] I.E. Kaporin, “Using Chebyshev polynomials and approximate inverse triangular decomposition to pre-condition the conjugate gradient method”, J. Comp. Math. Math. Phys., 52:2 (2012), 169–193 | DOI | MR | Zbl