Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_2_a7, author = {A. V. Gorobets and S. A. Soukov and A. R. Magomedov}, title = {Heterogeneous parallel implementation of a multigrid method with full approximation in the {NOISETTE} code}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {129--146}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_2_a7/} }
TY - JOUR AU - A. V. Gorobets AU - S. A. Soukov AU - A. R. Magomedov TI - Heterogeneous parallel implementation of a multigrid method with full approximation in the NOISETTE code JO - Matematičeskoe modelirovanie PY - 2024 SP - 129 EP - 146 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2024_36_2_a7/ LA - ru ID - MM_2024_36_2_a7 ER -
%0 Journal Article %A A. V. Gorobets %A S. A. Soukov %A A. R. Magomedov %T Heterogeneous parallel implementation of a multigrid method with full approximation in the NOISETTE code %J Matematičeskoe modelirovanie %D 2024 %P 129-146 %V 36 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2024_36_2_a7/ %G ru %F MM_2024_36_2_a7
A. V. Gorobets; S. A. Soukov; A. R. Magomedov. Heterogeneous parallel implementation of a multigrid method with full approximation in the NOISETTE code. Matematičeskoe modelirovanie, Tome 36 (2024) no. 2, pp. 129-146. http://geodesic.mathdoc.fr/item/MM_2024_36_2_a7/
[1] K. N. Volkov, Yu. N. Deryugin, V. N. Emelyanov, A. G. Karpenko, A. S. Kozelkov, I. V. Teterina, Metody uskoreniia gazodinamicheskikh raschetov na nestrukturirovannykh setkakh, Fizmatlit, M., 2014
[2] R. P. Fedorenko, “A relaxation method for solving elliptic difference equations”, USSR Comput. Math. Math. Phys., 1 (1961), 1092 | DOI | MR | Zbl
[3] V. S. Akimov, D. P. Silaev, A. S. Simonov, A. S. Semenov, “Issledovanie masshtabiruemosti Flow Vision na klastere s interkonnektom Angara”, Vychislitelnye metody i programmirovanie, 18:4 (2017), 406–415
[4] A. A. Golubev, Yu. N. Deryugin, D. K. Zelenskii, A. S. Kozelkov, S. V. Lashkin, D. P. Silaev, A. S. Simonov, “Paket program Logos. Algebraicheskii mnogosetochnyi metod resheniia SLAU dlia zadach gidrodinamiki”, Sovremennye problem nauki i obrazovaniia, 2013, no. 6
[5] A. S. Kozelkov, S. V. Lashkin, A. A. Kurkin et al, “An Efficient Parallel Implementation of the SIMPLE Algorithm Based on a Multigrid Method”, Numer. Analys. Appl., 13 (2020), 1–16 | DOI | MR | Zbl
[6] N. M. Evstigneev, O. I. Ryabkov, K. M. Gerke, “Stationary Stokes solver for single-phase flow in porous media: A blastingly fast solution based on Algebraic Multigrid Method using GPU”, Advances in Water Resources, 171 (2023), 104340 | DOI
[7] V. T. Zhukov, O. B. Feodoritova, “Multigrid for finite-element discretizations of the equations of aerodynamics”, Math. Models Comput. Simul., 3:4 (2011), 446–456 | DOI | MR | Zbl
[8] D. Demidov, “AMGCL: An efficient, flexible, and extensible algebraic multigrid implementation”, Lobachevskii Journal of Mathematics, 40:5 (2019), 535–546 | DOI | MR | Zbl
[9] B. Krasnopolsky, A. Medvedev, “XAMG: A library for solving linear systems with multiple right-hand side vectors”, SoftwareX, 14 (2021), 100695 | DOI
[10] A.V. Wolkov, “Application of the multigrid approach for solving 3D Navier-Stokes equations on hexahedral grids using the discontinuous Galerkin method”, Comput. Math. Math. Phys., 50:3 (2010), 495–508 | DOI | MR | Zbl
[11] A. V. Gorobets, “An approach to the implementation of the multigrid method with full approximation for CFD problems”, Comput. Math. Math. Phys., 63:11 (2023), 2150–2161 | DOI | MR
[12] A. Gorobets, P. Bakhvalov, “Heterogeneous CPU+GPU parallelization for high-accuracy scale-resolving simulations of compressible turbulent flows on hybrid supercomputers”, Computer Physics Communications, 271 (2022), 108231 | DOI | MR | Zbl
[13] P. A. Bakhvalov, T. K. Kozubskaya, P. V. Rodionov, “EBR schemes with curvilinear reconstructions for hybrid meshes”, Computers Fluids, 239 (2022), 105352 | DOI | MR | Zbl
[14] P. Bakhvalov, T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes”, Computers Fluids, 157 (2017), 312–324 | DOI | MR | Zbl
[15] P. A. Bakhvalov, M. D. Surnachev, “Method of averaged element splittings for diffusion terms discretization in vertex-centered framework”, Journal of Computational Physics, 450 (2022), 110819 | DOI | MR
[16] H. A. Van der Vorst, “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems”, SIAM Journal on Scientific Computing, 13 (1992), 631–644 | DOI | MR
[17] D. J. Mavriplis, Multigrid Techniques for Unstructured Meshes, NASA-CR-195070, Von Karman Institute Lecture Series 1995-02, NASA Langley Research Center. Institute for Computer Applications in Science and Engineering, 1995
[18] R. A. Zagitov, S. D. Salnikov, N. V. Shuvalov, “Automatic block-structured grid generation in turbo machine blade passages by turbor software”, Mathematical Models and Computer Simulations, 16 (2024) | DOI
[19] A. Duben, A. Gorobets, S. Soukov, O. Marakueva, N. Shuvaev, R. Zagitov, “Supercomputer Simulations of Turbomachinery Problems with Higher Accuracy on Unstructured Meshes”, RuSCDays 2022, Lecture Notes in Computer Science, 13708, 356–367 | DOI