Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_2_a6, author = {F. V. Grigorev}, title = {Numerical modeling of groundwater flow in fractured porous media based on the {DFM} approach}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {113--128}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_2_a6/} }
TY - JOUR AU - F. V. Grigorev TI - Numerical modeling of groundwater flow in fractured porous media based on the DFM approach JO - Matematičeskoe modelirovanie PY - 2024 SP - 113 EP - 128 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2024_36_2_a6/ LA - ru ID - MM_2024_36_2_a6 ER -
F. V. Grigorev. Numerical modeling of groundwater flow in fractured porous media based on the DFM approach. Matematičeskoe modelirovanie, Tome 36 (2024) no. 2, pp. 113-128. http://geodesic.mathdoc.fr/item/MM_2024_36_2_a6/
[1] N. S. Tsebakovskaia, S. S. Utkin, I. V. Kapyrin, N. V. Mediantsev, A. V. Shamina, Obzor zarubezhnykh praktik zakhoroneniia OIAT i RAO, eds. I.I. Linge, IU. D. Poliakov, Izd-vo «Komtekhprint», M., 2015, 208 pp.
[2] A. N. Dorofeev, L. A. Bolshov, I. I. Linge, S. S. Utkin, E. A. Saveleva, “Strategic Master-Plan for Research Demonstrating the Safety of Construction, Operation and Closure of a Deep Geological Repository for Radioactive Waste”, Radioactive waste, 2017, no. 1, 19–26
[3] T. Hadgu et al, “A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock”, Journal of Hydrology, 553 (2017), 59–70 | DOI
[4] I. V. Kapyrin, S. S. Utkin, Iu. V. Vasilevskii, “Kontseptsiia razrabotki i ispolzovaniia raschetnogo kompleksa GeRa dlia obosnovaniia bezopasnosti punktov zakhoroneniia radioaktivnykh otkhodov”, Voprosy atomnoi nauki i tekhniki. Seriia: Matematicheskoe modelirovanie fizicheskikh protsessov, 2014, no. 4, 44–54
[5] I. Berre, F. Doster, E. Keilegavlen, “Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches”, Transp. Porous Media, 130:1 (2019), 215–236 | DOI | MR
[6] E. A. Kalinina et al, “Applications of fractured continuum model to enhanced geothermal system heat extraction problems”, SpringerPlus, 3 (2014), 1–13 | DOI | MR
[7] T. Samardzioska, V. Popov, Numerical comparison of the equivalent continuum, nonhomogeneous and dual porosity models for flow and transport in fractured porous media, Elsevier, 2005 | MR
[8] X. Y. Zhang, F. N. Ma, Z. X. Dai, J. Wang, L. Chen, H. Ling, M. R. Soltanian, “Radionuclide transport in multi-scale fractured rocks: A review”, J. Hazard. Mater., 424 (2022), 127550 | DOI
[9] A. V. Blonsky, D. A. Mitrushkin, E. B. Savenkov, “Modelirovanie techenij v diskretnoj sisteme treshchin: fiziko-matematicheskaia model”, Preprinty IPM im. M.V.Keldysha, 2017, 065, 28 pp.
[10] S. Joyce, L. Hartley, D. Applegate, J. Hoek, P. Jackson, “Multi-scale groundwater flow modeling during temperate climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden”, Hydrogeol. J., 22:6 (2014), 1233–1249 | DOI
[11] L. Hartley, S. Joyce, “Approaches and algorithms for groundwater flow modeling in support of site investigations and safety assessment of the Forsmark site, Sweden”, J. Hydrol., 500 (2013), 200–216 | DOI
[12] M. Oda, “Permeability tensor for discontinuous rock masses”, Geotechnique, 1985
[13] M. Chen, M. Bai, J. C. Roegiers, “Permeability tensors of anisotropic fracture networks”, Math. Geol., 31:4 (1999) | DOI
[14] J. E. Warren, P. J. Root, “The behavior of naturally fractured reservoirs”, Society of Petroleum Engineers Journal, 3:03 (1963), 245–255 | DOI
[15] G. I. Barenblatt, Y. P. Zheltov, I. N. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks”, J. of Applied Mathematics and Mechanics, 24:5 (1960), 852–864 | DOI | Zbl
[16] J. S?imu?nek, M. T. van Genuchten, “Modeling nonequilibrium flow and transport processes using HYDRUS”, Vadose zone journal, 7:2 (2008), 782–797 | DOI
[17] J. Chastanet, B. D. Wood, “Mass transfer process in a two region medium”, Water resources research, 44:5 (2008) | DOI
[18] T. Arbogast, Jr J. Douglas, U. Hornung, “Derivation of the double porosity model of single phase flow via homogenization theory”, SIAM Journal on Mathematical Analysis, 21:4 (1990), 823–836 | DOI | MR | Zbl
[19] J. Tecklenburg et al, “A non-local two-phase flow model for immiscible displacement in highly heterogeneous porous media and its parametrization”, Advances in water resources, 62 (2013), 475–487 | DOI
[20] K. Pruess, Y. W. Tsang, “On twophase relative permeability and capillary pressure of rough-walled rock fractures”, Water resources research, 26:9 (1990), 1915–1926 | DOI
[21] J. D. Hyman et al, “DFNWorks: A discrete fracture network framework for modeling subsurface flow and transport”, Computers Geosciences, 84 (2015), 10–19 | DOI
[22] M. Tene et al, “Projection-based embedded discrete fracture model (pEDFM)”, Advances in Water Resources, 105 (2017), 205–216 | DOI
[23] R. M. Yanbarisov, K. D. Nikitin, “Projection-based monotone embedded discrete fracture method for flow and transport in porous media”, Journal of Computational and Applied Mathematics, 392 (2021), 113484 | DOI | MR | Zbl
[24] H. J.G. Diersch, FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media, Springer Science Business Media, 2013
[25] J. D. Hyman et al, “Flow and transport in three-dimensional discrete fracture matrix models using mimetic finite difference on a conforming multi-dimensional mesh”, Journal of Computational Physics, 466 (2022), 1–33 | DOI | MR
[26] Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites, SKB R-12-04, Swedish Nuclear Fuel and Waste Management Co
[27] I. V. Kapyrin, “Computational Codes for the Hydrogeological Modeling in the Safety Assessment of Nuclear Facilities”, Radioactive Waste, 2022, no. 2 (19), 105–118 | DOI
[28] F. V. Grigorev, I. V. Kapyrin, A. V. Plenkin, “Discrete Fracture Matrix Model Applied to the Computation of Water Flow Through the Underground Facility”, Lobachevskii Journal of Mathematics, 41 (2020), 526–532 | DOI | MR | Zbl
[29] J. Droniou, “Finite volume schemes for diffusion equations: Introduction to and review of modern methods”, Math. Models Methods in Applied Sci., 24:08 (2014), 1575–619 | DOI | MR
[30] I. Aavatsmark, G. T. Eigestad, R. A. Klausen, “Numerical convergence of the MPFA O-method for general quadrilateral grids in two and three dimensions”, Compatible spatial discretizations, Springer, New York, 2006, 1–21 | MR | Zbl
[31] D. Bagaev, F. Grigoriev, I. Kapyrin, I. Konshin, V. Kramarenko, A. Plenkin, “Improving parallel efficiency of a complex hydrogeological problem simulation in GeRa”, Supercomputing, 5th Russian Supercomputing Days, RuSCDays 2019, Revised Selected Papers (Moscow, Russia, September 23-24, 2019), Springer International Publ, 2019, 265–277 | DOI
[32] G. D. Neuvazhaev, Razrabotka i parametricheskoe obespechenie raschetnykh modelei dlia obosnovaniia dolgovremennoi bezopasnosti punkta glubinnogo zakhoroneniia radioaktivnykh otkhodov (uchastok «Eniseiskii»), diss. kand. tekhn. nauk., Institut problem bezopasnogo razvitiia atomnoi energetiki RAN, M., 2022