Numerical modeling of groundwater flow in fractured porous media based on the DFM approach
Matematičeskoe modelirovanie, Tome 36 (2024) no. 2, pp. 113-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides a survey of approaches to groundwater flow modeling in fractured porous media, discussing their merits and shortcomings. The DFM (Discrete Fracture and Matrix) model implemented in the GeRa software is described, emphasizing its capacity to explicitly consider the geometry of fractures and the water exchange between fractures and the porous matrix. The use of multipoint flux approximation on the fracture within the finite volume method based on the O-scheme is proposed. The implemented numerical scheme is applied to solve a practical problem of estimating water inflow to underground research laboratory in a fractured rock massif.
Keywords: groundwater flow, fractured porous media, finite volume method, multipoint flux approximation.
@article{MM_2024_36_2_a6,
     author = {F. V. Grigorev},
     title = {Numerical modeling of groundwater flow in fractured porous media based on the {DFM} approach},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {113--128},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_2_a6/}
}
TY  - JOUR
AU  - F. V. Grigorev
TI  - Numerical modeling of groundwater flow in fractured porous media based on the DFM approach
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 113
EP  - 128
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_2_a6/
LA  - ru
ID  - MM_2024_36_2_a6
ER  - 
%0 Journal Article
%A F. V. Grigorev
%T Numerical modeling of groundwater flow in fractured porous media based on the DFM approach
%J Matematičeskoe modelirovanie
%D 2024
%P 113-128
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_2_a6/
%G ru
%F MM_2024_36_2_a6
F. V. Grigorev. Numerical modeling of groundwater flow in fractured porous media based on the DFM approach. Matematičeskoe modelirovanie, Tome 36 (2024) no. 2, pp. 113-128. http://geodesic.mathdoc.fr/item/MM_2024_36_2_a6/

[1] N. S. Tsebakovskaia, S. S. Utkin, I. V. Kapyrin, N. V. Mediantsev, A. V. Shamina, Obzor zarubezhnykh praktik zakhoroneniia OIAT i RAO, eds. I.I. Linge, IU. D. Poliakov, Izd-vo «Komtekhprint», M., 2015, 208 pp.

[2] A. N. Dorofeev, L. A. Bolshov, I. I. Linge, S. S. Utkin, E. A. Saveleva, “Strategic Master-Plan for Research Demonstrating the Safety of Construction, Operation and Closure of a Deep Geological Repository for Radioactive Waste”, Radioactive waste, 2017, no. 1, 19–26

[3] T. Hadgu et al, “A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock”, Journal of Hydrology, 553 (2017), 59–70 | DOI

[4] I. V. Kapyrin, S. S. Utkin, Iu. V. Vasilevskii, “Kontseptsiia razrabotki i ispolzovaniia raschetnogo kompleksa GeRa dlia obosnovaniia bezopasnosti punktov zakhoroneniia radioaktivnykh otkhodov”, Voprosy atomnoi nauki i tekhniki. Seriia: Matematicheskoe modelirovanie fizicheskikh protsessov, 2014, no. 4, 44–54

[5] I. Berre, F. Doster, E. Keilegavlen, “Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches”, Transp. Porous Media, 130:1 (2019), 215–236 | DOI | MR

[6] E. A. Kalinina et al, “Applications of fractured continuum model to enhanced geothermal system heat extraction problems”, SpringerPlus, 3 (2014), 1–13 | DOI | MR

[7] T. Samardzioska, V. Popov, Numerical comparison of the equivalent continuum, nonhomogeneous and dual porosity models for flow and transport in fractured porous media, Elsevier, 2005 | MR

[8] X. Y. Zhang, F. N. Ma, Z. X. Dai, J. Wang, L. Chen, H. Ling, M. R. Soltanian, “Radionuclide transport in multi-scale fractured rocks: A review”, J. Hazard. Mater., 424 (2022), 127550 | DOI

[9] A. V. Blonsky, D. A. Mitrushkin, E. B. Savenkov, “Modelirovanie techenij v diskretnoj sisteme treshchin: fiziko-matematicheskaia model”, Preprinty IPM im. M.V.Keldysha, 2017, 065, 28 pp.

[10] S. Joyce, L. Hartley, D. Applegate, J. Hoek, P. Jackson, “Multi-scale groundwater flow modeling during temperate climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden”, Hydrogeol. J., 22:6 (2014), 1233–1249 | DOI

[11] L. Hartley, S. Joyce, “Approaches and algorithms for groundwater flow modeling in support of site investigations and safety assessment of the Forsmark site, Sweden”, J. Hydrol., 500 (2013), 200–216 | DOI

[12] M. Oda, “Permeability tensor for discontinuous rock masses”, Geotechnique, 1985

[13] M. Chen, M. Bai, J. C. Roegiers, “Permeability tensors of anisotropic fracture networks”, Math. Geol., 31:4 (1999) | DOI

[14] J. E. Warren, P. J. Root, “The behavior of naturally fractured reservoirs”, Society of Petroleum Engineers Journal, 3:03 (1963), 245–255 | DOI

[15] G. I. Barenblatt, Y. P. Zheltov, I. N. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks”, J. of Applied Mathematics and Mechanics, 24:5 (1960), 852–864 | DOI | Zbl

[16] J. S?imu?nek, M. T. van Genuchten, “Modeling nonequilibrium flow and transport processes using HYDRUS”, Vadose zone journal, 7:2 (2008), 782–797 | DOI

[17] J. Chastanet, B. D. Wood, “Mass transfer process in a two region medium”, Water resources research, 44:5 (2008) | DOI

[18] T. Arbogast, Jr J. Douglas, U. Hornung, “Derivation of the double porosity model of single phase flow via homogenization theory”, SIAM Journal on Mathematical Analysis, 21:4 (1990), 823–836 | DOI | MR | Zbl

[19] J. Tecklenburg et al, “A non-local two-phase flow model for immiscible displacement in highly heterogeneous porous media and its parametrization”, Advances in water resources, 62 (2013), 475–487 | DOI

[20] K. Pruess, Y. W. Tsang, “On twophase relative permeability and capillary pressure of rough-walled rock fractures”, Water resources research, 26:9 (1990), 1915–1926 | DOI

[21] J. D. Hyman et al, “DFNWorks: A discrete fracture network framework for modeling subsurface flow and transport”, Computers Geosciences, 84 (2015), 10–19 | DOI

[22] M. Tene et al, “Projection-based embedded discrete fracture model (pEDFM)”, Advances in Water Resources, 105 (2017), 205–216 | DOI

[23] R. M. Yanbarisov, K. D. Nikitin, “Projection-based monotone embedded discrete fracture method for flow and transport in porous media”, Journal of Computational and Applied Mathematics, 392 (2021), 113484 | DOI | MR | Zbl

[24] H. J.G. Diersch, FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media, Springer Science Business Media, 2013

[25] J. D. Hyman et al, “Flow and transport in three-dimensional discrete fracture matrix models using mimetic finite difference on a conforming multi-dimensional mesh”, Journal of Computational Physics, 466 (2022), 1–33 | DOI | MR

[26] Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites, SKB R-12-04, Swedish Nuclear Fuel and Waste Management Co

[27] I. V. Kapyrin, “Computational Codes for the Hydrogeological Modeling in the Safety Assessment of Nuclear Facilities”, Radioactive Waste, 2022, no. 2 (19), 105–118 | DOI

[28] F. V. Grigorev, I. V. Kapyrin, A. V. Plenkin, “Discrete Fracture Matrix Model Applied to the Computation of Water Flow Through the Underground Facility”, Lobachevskii Journal of Mathematics, 41 (2020), 526–532 | DOI | MR | Zbl

[29] J. Droniou, “Finite volume schemes for diffusion equations: Introduction to and review of modern methods”, Math. Models Methods in Applied Sci., 24:08 (2014), 1575–619 | DOI | MR

[30] I. Aavatsmark, G. T. Eigestad, R. A. Klausen, “Numerical convergence of the MPFA O-method for general quadrilateral grids in two and three dimensions”, Compatible spatial discretizations, Springer, New York, 2006, 1–21 | MR | Zbl

[31] D. Bagaev, F. Grigoriev, I. Kapyrin, I. Konshin, V. Kramarenko, A. Plenkin, “Improving parallel efficiency of a complex hydrogeological problem simulation in GeRa”, Supercomputing, 5th Russian Supercomputing Days, RuSCDays 2019, Revised Selected Papers (Moscow, Russia, September 23-24, 2019), Springer International Publ, 2019, 265–277 | DOI

[32] G. D. Neuvazhaev, Razrabotka i parametricheskoe obespechenie raschetnykh modelei dlia obosnovaniia dolgovremennoi bezopasnosti punkta glubinnogo zakhoroneniia radioaktivnykh otkhodov (uchastok «Eniseiskii»), diss. kand. tekhn. nauk., Institut problem bezopasnogo razvitiia atomnoi energetiki RAN, M., 2022