Numerical modelling of noise generation by different propeller configurations of a multicopter
Matematičeskoe modelirovanie, Tome 36 (2024) no. 2, pp. 99-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

Lightweight multicopters (drones) are widely used for commercial and other activities. In the developed countries of Europe and the United States, legislative measures are beginning to be developed to limit the noise of multicopters, so the low noise level of a propeller multicopter is an important factor in competitiveness. This requires the development of computational aeroacoustics methods in combination with computer-aided design systems for drones, including propellers. The application of the method of decomposition of vortex and acoustic modes in a subsonic isentropic flow, described in this article, makes it possible to consider the factors of flow inhomogeneity and rotor interference. For feasibility study, a single-processor version of the software was used, which implements this method in the time domain for the propeller blade passing frequency (BPF). There are presented comparative characteristics of the sound field parameters for different rotor configurations in the hovering mode above the ground. The necessity of optimizing the mutual position of the propellers of the multicopter to ensure a low level of radiated sound power is shown.
Mots-clés : acoustic-vortex decomposition, source
Keywords: multicopter propeller, BPF, propeller configuration.
@article{MM_2024_36_2_a5,
     author = {A. Aksenov and S. Timushev and D. Klimenko and S. Fedoseev and P. Moshkov},
     title = {Numerical modelling of noise generation by different propeller configurations of a multicopter},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {99--112},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_2_a5/}
}
TY  - JOUR
AU  - A. Aksenov
AU  - S. Timushev
AU  - D. Klimenko
AU  - S. Fedoseev
AU  - P. Moshkov
TI  - Numerical modelling of noise generation by different propeller configurations of a multicopter
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 99
EP  - 112
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_2_a5/
LA  - ru
ID  - MM_2024_36_2_a5
ER  - 
%0 Journal Article
%A A. Aksenov
%A S. Timushev
%A D. Klimenko
%A S. Fedoseev
%A P. Moshkov
%T Numerical modelling of noise generation by different propeller configurations of a multicopter
%J Matematičeskoe modelirovanie
%D 2024
%P 99-112
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_2_a5/
%G ru
%F MM_2024_36_2_a5
A. Aksenov; S. Timushev; D. Klimenko; S. Fedoseev; P. Moshkov. Numerical modelling of noise generation by different propeller configurations of a multicopter. Matematičeskoe modelirovanie, Tome 36 (2024) no. 2, pp. 99-112. http://geodesic.mathdoc.fr/item/MM_2024_36_2_a5/

[1] ABCNews: Whining drones bringing burritos and coffee are bitterly dividing Canberra residents, (Accessed:11-03-2019) https://www.abc.net.au/news/2018-11-09/noise-from-drone-delivery-service-divides-canberra-residents/10484044

[2] BBC News: Why your pizza may never be delivered by drone, (Accessed: 11-03-2019) https://www.bbc.com/news/business-46483178

[3] P.A Moshkov, V. F. Samokhin, A. A. Yakovlev, “Selection of an audibility criterion for propeller driven unmanned aerial vehicle”, Russian Aeronautics, 61:2 (2018), 149–155 | DOI | MR

[4] P. Moshkov, N. Ostrikov, V. Samokhin, A. Valiev, “Study of Ptero-G0 UAV Noise with Level Flight Conditions”, 25th AIAA/CEAS Aeroacoustics Conference, 2019, AIAA Paper No2019–2514 | DOI

[5] S. Timushev; D. Klimenko, A. Aksenov, V. Gavrilyuk, J. Li, “On a new approach for numerical modeling of the quadcopter rotor sound generation and propagation”, Proc. of 2020. International Congress on Noise Control Eng., INTER-NOISE 2020, 2020

[6] C. Holsclaw, Stage 5 Airplane Noise Standards, Federal Register, v.81, No 1923, Federal Aviation Administration, Jan. 2016

[7] E. Franssen, Van C. Wichen, N. Nagelkerke, E. Lebret, “Aircraft Noise Around a Large International Airport and Its Impact on General Health and Medication Use”, Occupational and Environmental Medicine, 61:5 (2004), 405–413 | DOI

[8] H. Swift, A Review of the Literature Related to Potential Health Effects of Aircraft Noise, Partnership for Air Transportation Noise and Emissions Reduction, PARTNERCOE-2010-003, Massachusetts Inst. of Technology, Cambridge, MA, July 2010

[9] Abhishek Kumar Sahai, Consideration of aircraft noise annoyance during conceptual aircraft design, PhD thesis, June 2016 (Accessed: 27-02-2020) http://publications.rwth-aachen.de/record/668901

[10] N. Kloet, S. Watkins, R. Clothier, “Acoustic signature measurement of small multi-rotor unmanned aircraft systems”, Inter. J. of Micro Air Vehicles, 9, Feb. (2017), 3–14 | DOI

[11] B. Magliozzi, D. B. Hanson, R. K. Amiet, “Propeller and Propfan Noise”, Aeroacoustics of Flight Vehicles: Theory and Practice, v. 1, NASA Reference Publ., 1258, ed. H.H. Hubbard, Hampton, VA, 1991, 1–64

[12] C. E. Tinney, J. Sirohi, “Multirotor Drone Noise at Static Thrust”, AIAA Journal, 56, July (2018), 2816–2826 | DOI

[13] N. Intaratep, W. N. Alexander, W. J. Devenport, S. M. Grace, A. Dropkin, “Experimental Study of Quadcopter Acoustics and Performance at Static Thrust Conditions”, 22nd AIAA/CEAS Aeroacoustics Conference (June, 2016)

[14] L. Gutin, On the Sound Field of a Rotating Propeller, NACA TM-1195, Oct. 1948 | MR

[15] A. F. Deming, Noise from Propellers with Symmetrical Sections at Zero Blade Angle II, NACA TN-679, Dec. 1938

[16] D. B. Hanson, “Helicoidal Surface Theory for Harmonic Noise of Propellers in the Far Field”, AIAA Journal, 18:10 (1980), 1213–1220 | DOI | MR

[17] D. B. Hanson, “Sound from a Propeller at Angle of Attack: A New Theoretical Viewpoint”, Proc. Mathematical and Physical Sciences, 449:1936 (1995), 315–328

[18] C. L. Morfey, “Rotating Blades and Aerodynamic Sound”, J. of Sound and Vibration, 28:3 (1973), 587–617 | DOI

[19] B. Magliozzi, F. B. Metzger, W. Baush, R. J. King, A Comprehensive Review of Helicopter Noise Literature, Federal Aviation Administration Rept. FAA-RD-75–79, June 1975

[20] F. Farassat, G. P. Succi, “A Review of Propeller Discrete Frequency Noise Prediction Technology with Emphasis on Two Current Methods for Time Domain Calculations”, J. of Sound and Vibration, 71:3 (1980), 399–419 | DOI | MR

[21] A. Guedel, Acoustique des ventilateurs, CETIAT. PYC LIVRES, 1999

[22] V. G. Bobkov, I. V. Abalakin, T. K. Kozubskaia, “Metodika rascheta aerodinamicheskikh kharakteristik vintov vertoleta na osnove reberno-orientirovannykh skhem v komplekse programm NOISEtte”, Kompiuternye issledovaniia i modelirovanie, 12:5 (2020), 1097–1122

[23] S. Caro, S. Moreau, “Comparaison d'une technique 2D de type Sears avec un calcul instationnaire direct pour le calcul du bruit de raies d'un ventilateur”, Bruit des ventilateurs a basse vitesse, Actes du colloque tenu a l'Ecole Centrale de Lyon les 8 et 9 novembre, 2001 | MR

[24] S. Caro, R. Sandboge, J. Iyer, Y. Nishio, “Presentation of a CAA formulation based on Lighthill's analogy for fan noise”, Proc. of 3rd International symposium on Fan Noise 2007 (Lyon, France, September 2007), 19–21

[25] R. Sandboge, K. Washburn, Ch. Peak, “Validation of a CAA Formulation Based on Lighthill's Analogy for a Cooling Fan and Mower Blade Noise”, Proc. of 3rd International symposium on Fan Noise 2007 (Lyon, France, 19-21 September 2007)

[26] M. J. Lighthill, “On sound generated aerodynamically. Part I. General Theory”, Proc. of the Royal Society, London A, 211 (1952), 564–587 | MR | Zbl

[27] N. Curle, “The influence of solid boundaries upon aerodynamic sound”, Proc. Royal Soc., A, 231 (1955), 505–514 | MR | Zbl

[28] J. E. Ffowcs Williams, D. L. Hawkings, “Sound Generation by Turbulence and Surfaces in Arbitrary Motion”, Philosophical Transactions of the Royal Society of London, Series A: Math. and Phys. Sci., 264:1151 (1969), 321–342 | DOI | Zbl

[29] F. Farassat, M. K. Myers, “Extension of Kirchhhoff's formula to radiation from moving surfaces”, Journal of Sound and Vibration, 123 (1988), 451–461 | DOI | MR

[30] P. A. Moshkov, V. F. Samokhin, “Integral model of noise of an engine-propeller power plant”, Journal of Engineering Physics and Thermophysics, 91:2 (2018), 332–338 | DOI | MR

[31] V. Samokhin, P. Moshkov, A. Yakovlev, “Analytical model of engine fan noise”, Akustika, 32 (2019), 168–173 | DOI

[32] V. F. Kopiev, V. A. Titarev, I. V. Belyaev, “Development of a methodology for propeller noise calculation on high-performance computer”, TsAGI Science Journal, 45:3-4 (2014), 293–327 | DOI

[33] I. V. Abalakin, P. A. Bakhvalov, V. G. Bobkov, T. K. Kozubskaya, V. A. Anikin, “Numerical investigation of the aerodynamic and acoustical properties of a shrouded rotor”, Fluid Dynamics, 51:3 (2016), 419–433 | DOI | MR | Zbl

[34] V. A. Titarev, G. A. Faranosov, S. A. Chernyshev, A. S. Batrakov, “Numerical modeling of the influence of the relative positions of a propeller and pylon on turboprop aircraft noise”, Acoustical Physics, 64:6 (2018), 760–773 | DOI

[35] A. Filippone, “Aircraft noise prediction”, Progress in Aerospace Sciences, 68 (2014), 27–63 | DOI

[36] V. G. Dmitriev, V. F. Samokhin, “Complex of algorithms and programs for calculation of aircraft noise”, TsAGI Sci. J., 45:3-4 (2014), 367–388 | DOI

[37] N. N. Ostrikov, S. L. Denisov, 21st AIAA/CEAS Aeroacoustics Conference, 2015, AIAA Paper No 2015–2691 | DOI

[38] P. A. Moshkov, V. F. Samokhin, “Effect of spacing between pusher propeller and wing on environmental light aircraft noise”, TsAGI Science Journal, 47:6 (2016), 639–647 | DOI

[39] D. I. Blohincev, Akustika neodnorodnoj dvizhushchejsya sredy, Nauka, M., 1986

[40] M. E. Goldstein, Aeroacoustics, McSRAW-HILL International Book Company, 1976

[41] S. C. Crow, “Aerodynamic Sound Emission as a Singular Perturbation Problem”, Studies in Applied Mathematics, XLIX:1 (1970) | DOI

[42] K. I. Artamonov, Termogidro-akusticheskaya ustoichivost, Mashinostroenie, M., 1982, 261 pp.

[43] A. A. Aksenov, S. F. Timushev, D. V. Klimenko, S. Yu. Fedoseev, “Application of Acoustic-Vortex Method for CFD-CAA Modelling of Multicopter Noise”, Mathematical Models and Computer Simulations, 15:6 (2023), 1059–1074 | DOI | DOI | MR

[44] S. Timouchev, J. Tourret, “Numerical Simulation of BPF Pressure Pulsation Field In Centrifugal Pumps”, 19th International Pump Users Symposium, Proceedings (Houston, Texas, USA, 25-28 Feb 2002), 85–105

[45] S. Timouchev, A. Nedashkovsky, G. Pavic, “Experimental Validation of Axial Fan 3D Acoustic-Vortex Method CFD-CAA Study”, Proc. of 3rd Intern. symposium on Fan Noise 2007 (19-21 September 2007, Lyon, France)

[46] A. A. Aksenov, V. N. Gavrilyuk, S. F. Timushev, “Numerical simulation of tonal fan noise of computers and air conditioning systems”, Acoustical Physics, 62:4 (2016), 447–455 | DOI

[47] S. F. Timushev, D. V. Klimenko, “Computation of BPF pressure pulsations in the LRE screw-centrifugal pump with 3D acoustic-vortex method”, INTER-NOISE and NOISE-CON Congress and Conf. Proc., 255, no. 3, Institute of Noise Control Eng, 2017, 4157–4165

[48] A. A. Aksenov, D. V. Klimenko, S. F. Timushev, E. V. Shaporenko, “Modelirovanie generatsii akusticheskikh voln kvadrokopterom v ramkakh modeli akustiko-vikhrevoi dekompozitsii”, IX rossiiskaia konf., Sb. tezisov (g. Svetlogorsk Kaliningradskoi obl., 2022 g.), IPM im. Keldysha RAN, M., 2022

[49] S. Timushev, D. Klimenko, A. Aksenov, V. Gavrilyuk, J. Li, “On a new approach for numerical modeling of the quadcopter rotor sound generation and propagation”, Proc. of 2020 Inter. Congress on Noise Control Engineering, INTER-NOISE 2020

[50] R. Healy, M. Misiorwoski, F. Gandhi, A Systematic CFD-Based Examination of Rotor-Rotor Separation Effects on Interactional Aerodynamics for Large eVTOL Aircraft, Presented at the Vertical Flight Society 75th Annual Forum Technology Display (Philadelphia, Pennsylvania, May 13-16, 2019)

[51] B. Smith, F. Gandhi, R. Niemiec, A Comparison of Multicopter Noise Characteristics with Increasing Number of Rotors, Presented at the Vertical Flight Society's 76th Annual Forum Technology Display (Virginia Beach, Virginia, October 6-8, 2020)