About one spatial filtration model with non-classical law of motion in hydrate-containing environment
Matematičeskoe modelirovanie, Tome 36 (2024) no. 2, pp. 77-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work proposes a spatial two-component (H2O, CH4) three-phase (hydrate, free water and gas) filtration model taking into account the dissociation of gas hydrates, based on splitting by physical processes, using a non-classical law of motion (considering its non-linearity). The presented mathematical model makes it possible to calculate two-dimensional flows in areas with an irregular strata structure. With its help, it is possible to carry out both profile and areal calculations, taking into account the complex geometry of sedimentary basins. When testing it to solve problems of the theory of filtration in sed-imentary basins, the method of support operators was applied and implemented. This method makes it possible to calculate filtration processes in media with discontinuous physical properties, which is achieved by using irregular meshes. As a result, it becomes possible to model the shear zones and obtain a numerical solution under conditions of different scales of the problem. At the same time, on meshes with large cells, where there are discontinuities in material properties, a qualitative approximation of the transfer of saturations and gradients of thermodynamic quantities is preserved. The constructed mesh model also approximates the identities of the support operator method on different time layers. Based on the developed computing technology, a software package has been created, the tools of which are capable of solving two-dimensional problems of multiphase and multicomponent modeling of gas hydrate dissociation processes in the porous environment of sedimentary basins of lithologically complex structure on meshes of irregular structure. To test the software package, model calculations of piezoconductive processes in a three-phase medium with hydrated solid-phase inclusions in a two-dimensional case on irregular meshes were carried out. Calculations have shown a decrease in the depression value within spatial regions when using nonlinear filtration laws of motion in the medium compared to the classical Darcy law, which makes it possible to correctly describe the physics of low-permeability reservoirs.
Keywords: mathematical modeling, gas hydrates, support operator method, irregular meshes, nonlinear filtration law.
@article{MM_2024_36_2_a4,
     author = {A. E. Bakeer and Yu. A. Poveshchenko and V. O. Podryga and P. I. Rahimly},
     title = {About one spatial filtration model with non-classical law of motion in hydrate-containing environment},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {77--98},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_2_a4/}
}
TY  - JOUR
AU  - A. E. Bakeer
AU  - Yu. A. Poveshchenko
AU  - V. O. Podryga
AU  - P. I. Rahimly
TI  - About one spatial filtration model with non-classical law of motion in hydrate-containing environment
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 77
EP  - 98
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_2_a4/
LA  - ru
ID  - MM_2024_36_2_a4
ER  - 
%0 Journal Article
%A A. E. Bakeer
%A Yu. A. Poveshchenko
%A V. O. Podryga
%A P. I. Rahimly
%T About one spatial filtration model with non-classical law of motion in hydrate-containing environment
%J Matematičeskoe modelirovanie
%D 2024
%P 77-98
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_2_a4/
%G ru
%F MM_2024_36_2_a4
A. E. Bakeer; Yu. A. Poveshchenko; V. O. Podryga; P. I. Rahimly. About one spatial filtration model with non-classical law of motion in hydrate-containing environment. Matematičeskoe modelirovanie, Tome 36 (2024) no. 2, pp. 77-98. http://geodesic.mathdoc.fr/item/MM_2024_36_2_a4/

[1] P. Englezos, “Clathrate hydrates”, Ind. Eng. Chem. Res., 32 (1993), 1251–1274 | DOI

[2] S. Sh. Byk, Iu. F. Makogon, V. I. Fomina, Gazovye gidraty, Khimiia, M., 1980, 290 pp.

[3] K. S. Basniev, I. N. Kochina, V. M. Maksimov, Podzemnaia gidromekhanika, Nedra, M., 1993, 416 pp.

[4] O. Yu. Poveschenko, I. I. Galiguzova, I. V. Gasilova, E. Ju. Dorofeeva, O. G. Olkhovskaya, G. I. Kazakevich, “Modeling of the self-oscillating modes of oil- and gas-fields formation”, Math. Models Comput. Simul., 6:3 (2014), 317–323 | DOI | MR | Zbl

[5] G. I. Kazakevich, L. V. Klochkova, Iu. A. Poveshchenko, V. F. Tishkin, “Matematicheskoe issledovanie sistemy uravnenii gazogidratnykh protsessov v poristoi srede”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 13:1 (2011), 7–11

[6] V. A. Gasilov, I. V. Gasilova, L. V. Klochkova, Yu. A. Poveshchenko, V. F. Tishkin, “Difference schemes based on the support operator method for fluids dynamics problems in a collector containing gas hydrates”, Comput. Math. and Math. Phys., 55:8 (2015), 1310–1328 | DOI | DOI | MR | Zbl

[7] P. I. Ragimli, Matematicheskoe modelirovanie svyazannykh protsessov filtratsii v taloi zone i v pezoprovodnoi srede s gazogidratnymi vkliucheniiami, Dissertatsiia kand. fiz. mat. nauk. 05.13.18, M., 2018, 139 pp. | Zbl

[8] P. I. Rahimly, Yu. A. Poveshchenko, O. R. Rahimly, V. O. Podryga, G. I. Kazakevich, I. V. Gasilova, “The use of splitting with respect to physical processes for modeling the dissociation of gas hydrates”, Math. Models and Computer Simulations, 10:1 (2018), 69–78 | DOI | MR

[9] V. A. Nenakhov, “Osobennosti filtratsii vody cherez gidratonasyshchennye poristye sredy”, Ekspress-inform. VNIIEGazproma. Ser. Geologiya, bureniye i razrab. gaz. mestorozhdenii, 1982, no. 10, 9–10

[10] A. Kh. Mirzadzhanzade, Voprosy gidrodinamiki viazkoplastichnykh i viazkikh zhidkostei v primenenii k neftedobyche, Azerneftneshr, Baku, 1959, 409 pp.

[11] M. G. Alishaev, M. D. Rozenberg, E. V. Tesliuk, Neizotermicheskaia filtratsiia pri razrabotke neftianykh mestorozhdenii, Nedra, M., 1985, 271 pp.

[12] A. Kh. Mirzadzhanzade, I. M. Ametov, A. M. Khasaev, V. I. Qusev, Tekhnologiia i tekhnika dobychi nefti, Nedra, M., 1986, 382 pp.

[13] G. I. Barenblatt, V. M. Entov, V. M. Ryzhik, Dvizhenie zhidkostei i gazov v poristykh plastakh, Nedra, M., 1984, 211 pp.

[14] A. A. Samarskii, V. F. Tishkin, A. P. Favorskii, M. Iu. Shashkov, “Ispolzovanie metoda opornykh operatorov dlia postroeniia raznostnykh analogov operatsiy tenzornogo analiza”, Differents. uravneniia, 18:7 (1982), 1251–1256 | MR

[15] A. B. Khrulenko, A. P. Favorskii, V. Ia. Karpov, Vektornye i tenzornye modeli, Uch. posobie v 2 ch., MAKS Press, M., 2009, 113 pp.

[16] M. Shashkov, Conservative finite-difference methods on general grids, CRC Press, Boca Raton, FL, 1996, 359 pp. | MR | Zbl

[17] K. Lipnikov, G. Manzini, M. Shashkov, “Mimetic finite difference method”, Journal of Computational Physics, 257:B (2013), 1163–1227 | DOI | MR

[18] A. A. Samarskii, A. V. Koldoba, Iu. A. Poveshchenko, V. F. Tishkin, A. P. Favorskii, Raznostnye skhemy na nereguliarnykh setkakh, ZAO «Kriterii», Minsk, 1996, 275 pp.

[19] A. V. Koldoba, Iu. A. Poveshchenko, I. V. Gasilova, E. Iu. Dorofeeva, “Raznostnye skhemy metoda opornykh operatorov dlia uravnenii teorii uprugosti”, Matematicheskoe modelirovanie, 24:12 (2012), 86–96 | MR | Zbl

[20] K. S. Basniev, A. V. Nifantov, “Trekhmernaia matematicheskaia model razlozheniia gidratov metanov v poristoi srede pod deistviem tepla”, Nauka i tekhnika v gazovoi promyshlennosti, 2004, no. 1-2, 61–67

[21] Kh. Aziz, E. Settari, Matematicheskoe modelirovanie plastovykh sistem, Institut kompiuternykh issledovanii, M.-Izhevsk, 2004, 416 pp.

[22] E. A. Bondarev, G. D. Babe, A. G. Groisman, M. A. Kanibolotskii, Mekhanika obrazovaniia gidratov v gazovykh potokakh, Nauka (Sibirskoe otd.), M., 1976, 158 pp.

[23] Q. Lei, W. Xiong, J. Yuan, Sh. Gao, Y. Wu, “Behavior of Flow Through Low-Permeability Reservoirs”, SPE, 2008, 113144, 7 pp.

[24] V. A. Baikov, A. K. Makatrov, M. E. Politov, A. G. Telin, “Otkloneniia ot zakona Darsi pri filtratsii v nizkopronitsaemykh poristykh sredakh”, Materialy VI Vseross. nauchno-praktich. konferentsii “Neftepromyslovaia khimiya”, posviashchennoi 20-letiiu ZAO «Khimeko-GANG» (23-24 iiunia 2011 g.), Izd-vo RGU nefti i gaza im. I.M. Gubkina, M., 2011, 37–40

[25] V. A. Baikov, R. R. Galeev, A. V. Kolonskikh, A. K. Makatrov, M. E. Politov, A. G. Telin, A. V. Iakasov, “Nelineinaia filtratsiia v nizkopronitsaemykh kollektorakh. Analiz i interpretatsiia rezultatov laboratornykh issledovanii kerna Priobskogo mestorozhdeniia”, Vestnik OAO NK ‘`Rosneft’", 31:2 (2013), 8–12 | MR

[26] V. A. Baikov, R. R. Galeev, A. V. Kolonskikh, A. K. Makatrov, M. E. Politov, A. G. Telin, “Nelineinaia filtratsiia v nizkopronitsaemykh kollektorakh. Laboratornye filtratsionnye issledovaniia kerna Priobskogo mestorozhdeniia”, Vestnik OAO NK ‘`Rosneft’", 31:2 (2013), 4–7 | MR

[27] H. Su, D. Wang, P. Zhang, Y. An, Y. Fu, J. Lu, F. Huang, H. Zhang, Z. Ren, Z. Li, “A New Method to Calculate the Relative Permeability of Oil and Water in Tight Oil Reservoirs by Considering the Nonlinear Flow”, Geofluids, 2022, 2022, 14 pp. | DOI

[28] F. Song, L. Bo, S. Zhang, Y. Sun, “Nonlinear flow in low permeability reservoirs: Modelling and experimental verification”, Advances in Geo-Energy Research, 3:1 (2019), 76–81 | DOI | MR

[29] E. Luo, X. Wang, Y. Hu, J. Wang, L. Liu, “Analytical Solutions for Non-Darcy Transient Flow with the Threshold Pressure Gradient in Multiple-Porosity Media”, Mathematical Problems in Engineering, 2019 (2019), 13 pp. | DOI | MR

[30] J. Xu, R. Jiang, J. Fu, Y. Jiang, “A New Numerical Simulation Method for Horizontal Well in Tight Sandstone Reservoirs”, J. of Petroleum Science Research, 4 (2015), 39–46 | DOI

[31] G. I. Kazakevich, Yu. A. Poveshchenko, V. O. Podryga, P. I. Rahimly, O. R. Rahimly, “Chislennoe modelirovanie kharakternykh zadach dissotsiatsii gazovykh gidratov v poristoi srede. Odnomernaia postanovka”, Keldysh Institute preprints, 2019, 022, 15 pp. | DOI

[32] L. Hageman, D. Young, Applied iterative methods, Academic Press, Inc, NY, 1981, 404 pp. | MR | Zbl