Application of WENO-schemes for modelling shockwave processes
Matematičeskoe modelirovanie, Tome 36 (2024) no. 2, pp. 25-40

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is concerned with the analysis of WENO-schemes for the solution of one-dimensional Euler equations with a Mie–Grüneisen type equation of state. The least dissipative and oscillatory modifications of WENO-schemes in characteristic variables with a monotonicity-preserving (MP) limiter are presented. A modified scheme, MP-WENO-SM, is developed, demonstrating the smallest amplitude of oscillations in the solution of the test problems with discontinuous initial data.
Keywords: WENO, computational fluid dynamics, equations of state, shock waves in metals.
@article{MM_2024_36_2_a1,
     author = {F. A. Belolutskiy and V. V. Shepelev and S. V. Fortova},
     title = {Application of {WENO-schemes} for modelling shockwave processes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {25--40},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_2_a1/}
}
TY  - JOUR
AU  - F. A. Belolutskiy
AU  - V. V. Shepelev
AU  - S. V. Fortova
TI  - Application of WENO-schemes for modelling shockwave processes
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 25
EP  - 40
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_2_a1/
LA  - ru
ID  - MM_2024_36_2_a1
ER  - 
%0 Journal Article
%A F. A. Belolutskiy
%A V. V. Shepelev
%A S. V. Fortova
%T Application of WENO-schemes for modelling shockwave processes
%J Matematičeskoe modelirovanie
%D 2024
%P 25-40
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_2_a1/
%G ru
%F MM_2024_36_2_a1
F. A. Belolutskiy; V. V. Shepelev; S. V. Fortova. Application of WENO-schemes for modelling shockwave processes. Matematičeskoe modelirovanie, Tome 36 (2024) no. 2, pp. 25-40. http://geodesic.mathdoc.fr/item/MM_2024_36_2_a1/