Application of WENO-schemes for modelling shockwave processes
Matematičeskoe modelirovanie, Tome 36 (2024) no. 2, pp. 25-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is concerned with the analysis of WENO-schemes for the solution of one-dimensional Euler equations with a Mie–Grüneisen type equation of state. The least dissipative and oscillatory modifications of WENO-schemes in characteristic variables with a monotonicity-preserving (MP) limiter are presented. A modified scheme, MP-WENO-SM, is developed, demonstrating the smallest amplitude of oscillations in the solution of the test problems with discontinuous initial data.
Keywords: WENO, computational fluid dynamics, equations of state, shock waves in metals.
@article{MM_2024_36_2_a1,
     author = {F. A. Belolutskiy and V. V. Shepelev and S. V. Fortova},
     title = {Application of {WENO-schemes} for modelling shockwave processes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {25--40},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_2_a1/}
}
TY  - JOUR
AU  - F. A. Belolutskiy
AU  - V. V. Shepelev
AU  - S. V. Fortova
TI  - Application of WENO-schemes for modelling shockwave processes
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 25
EP  - 40
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_2_a1/
LA  - ru
ID  - MM_2024_36_2_a1
ER  - 
%0 Journal Article
%A F. A. Belolutskiy
%A V. V. Shepelev
%A S. V. Fortova
%T Application of WENO-schemes for modelling shockwave processes
%J Matematičeskoe modelirovanie
%D 2024
%P 25-40
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_2_a1/
%G ru
%F MM_2024_36_2_a1
F. A. Belolutskiy; V. V. Shepelev; S. V. Fortova. Application of WENO-schemes for modelling shockwave processes. Matematičeskoe modelirovanie, Tome 36 (2024) no. 2, pp. 25-40. http://geodesic.mathdoc.fr/item/MM_2024_36_2_a1/

[1] S. Clerc, “Accurate computation of contact discontinuities in flows with general equations of state”, Comput. Methods Appl. Mech. Engrg., 178 (1999), 3 | DOI | Zbl

[2] Z. He, Y. Zhang, X. Li, B. Tian, “Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities, ii”, Int. J. Numer. Meth. Fluids, 80:5 (2016), 306–316 | DOI | MR

[3] S. K. Godunov, “A Difference Scheme for Numerical Solution of Discontinuous Solution of Hydrodynamic Equations”, Mat. Sbornik, 47:3 (1959), 271–306 | Zbl

[4] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, Third edition, Springer-Verlag, Berlin–Heidelberg, 2009, xxiv+724 pp. | MR | Zbl

[5] C. Wu, L. Wu, H. Li, S. Zhang, “Very high order WENO schemes using efficient smoothness indicators”, J. Comp. Phys., 432 (2021), 110158 | DOI | MR

[6] Z. Hong, Z. Ye, K. Ye., “An improved WENO-Z scheme with symmetry-preserving mapping”, Adv. Aerodyn., 2:1 (2020), 18 | DOI

[7] D. S. Balsara, C. W. Shu, “Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy”, J. Comp. Phys., 160:2 (2000), 405–452 | DOI | MR | Zbl

[8] A. Suresh, H. Huynh, “Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping”, J. Comp. Phys., 136:1 (1997), 83–99 | DOI | MR | Zbl

[9] O. A. Kovyrkina, A. A. Kurganov, V. V. Ostapenko, “Comparative analysis of the accuracy of three different schemes in the calculation of shock waves”, Mathematical Models and Computer Simulations, 15:3 (2023), 401–414 | DOI | DOI | MR | Zbl

[10] M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “On the accuracy of the discontinuous Galerkin method in calculation of shock waves”, Comput. Math. Math. Phys., 58:8 (2018), 1344–1353 | DOI | MR | Zbl

[11] Z. He, Y. Zhang, X. Li, L. Li, B. Tian, “Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities”, J. Comp. Phys., 300 (2015), 269–287 | DOI | MR | Zbl

[12] U. S. Fjordholm, “Chapter 6: Stability Properties of the ENO Method”, Handbook of Numerical Methods for Hyperbolic Problems: Basic and Fundamental Issues, Elsevier North Holland, Amsterdam, 2016, 666 pp. | MR

[13] G. S. Jiang, C. W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comp. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl

[14] A. K. Henrick, T. D. Aslam, J. M. Powers, “Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points”, J. Comp. Phys., 207:2 (2005), 542–567 | DOI | Zbl

[15] R. Borges, M. Carmona, B. Costa, W. S. Don, “An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws”, J. Comp. Phys., 227:6 (2008), 3191–3211 | DOI | MR | Zbl

[16] N. M. Evstigneev, “On the construction and properties of WENO schemes order five, seven, nine, eleven and thirteen. P. 1. Construction and stability”, Comput. Res. Model., 8:5 (2016), 721–753 | DOI

[17] A. K. Henrick, T. D. Aslam, J. M. Powers, “Simulations of pulsating one-dimensional detonations with true fifth order accuracy”, J. Comp. Phys., 213:1 (2006), 311–329 | DOI | MR | Zbl

[18] V. V. Shepelev, Yu. V. Petrov, N. A. Inogamov, V. V. Zhakhovsky, E. A. Perov, S. V. Fortova, “Attenuation and inflection of initially planar shock wave generated by femtosecond laser pulse”, Optics Laser Technology, 152 (2022), 108100 | DOI

[19] V. V. Shepelev, N. A. Inogamov, S. V. Fortova, “Thermal and dynamic effects of laser irradiation of thin metal films”, Opt. Quantum Electron., 52 (2020), 88 | DOI

[20] D. I. Ketcheson, S. Gottlieb, C. B. Macdonald, “Strong stability preserving two-step Runge-Kutta methods”, SIAM J. Numer. Anal., 49 (2011), 2618–2639 | DOI | MR | Zbl