Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_2_a0, author = {M. D. Bragin}, title = {Numerical modeling of compressible mixing layers with a bicompact scheme}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--24}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_2_a0/} }
M. D. Bragin. Numerical modeling of compressible mixing layers with a bicompact scheme. Matematičeskoe modelirovanie, Tome 36 (2024) no. 2, pp. 3-24. http://geodesic.mathdoc.fr/item/MM_2024_36_2_a0/
[1] D. W. Bogdanoff, “Compressibility effects in turbulent shear layers”, AIAA Journal, 21:6 (1983), 926–927 | DOI
[2] D. Papamoschou, A. Roshko, “The compressible turbulent shear layer: an experimental study”, J. Fluid Mech, 197 (1988), 453–477 | DOI | MR
[3] G. S. Elliott, M. Samimy, “Compressibility effects in free shear layers”, Phys. Fluids A, 2:7 (1990), 1231–1240 | DOI
[4] S. G. Goebel, J. C. Dutton, “Experimental study of compressible turbulent mixing layers”, AIAA Journal, 29:4 (1991), 538–546 | DOI
[5] S. K. Lele, Direct numerical simulation of compressible free shear flows, AIAA Paper 89-0374, 1989, 16 pp.
[6] N. D. Sandham, W. C. Reynolds, “Compressible mixing layer: linear theory and direct simulation”, AIAA Journal, 28:4 (1990), 618–624 | DOI
[7] K. H. Luo, N. D. Sandham, “On the formation of small scales in a compressible mixing layer”, Fluid Mechanics and Its Applications, 26 (1994), 335–346 | DOI
[8] A. W. Vreman, N. D. Sandham, K. H. Luo, “Compressible mixing layer growth rate and turbulence characteristics”, J. Fluid Mech, 320 (1996), 235–258 | DOI | Zbl
[9] J. B. Freund, S. K. Lele, P. Moin, “Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate”, J. Fluid. Mech., 421 (2000), 229–267 | DOI | MR | Zbl
[10] C. Pantano, S. Sarkar, “A study of compressibility effects in the high-speed turbulent shear layer using direct simulation”, J. Fluid Mech., 451 (2002), 329–371 | DOI | MR | Zbl
[11] Q. Li, S. Fu, “Numerical simulation of high-speed planar mixing layer”, Comput. Fluids, 32 (2003), 1357–1377 | DOI | Zbl
[12] S. Fu, Q. Li, “Numerical simulation of compressible mixing layers”, Int. J. Heat Fluid Flow, 27 (2006), 895–901 | DOI
[13] X. T. Shi, J. Chen, W. T. Bi, C. W. Shu, Z. S. She, “Numerical simulations of compressible mixing layers with a discontinuous Galerkin method”, Acta Mech. Sin., 27:3 (2011), 318–329 | DOI | MR
[14] Q. Zhou, F. He, M. Y. Shen, “Direct numerical simulation of a spatially developing compressible plane mixing layer: flow structures and mean flow properties”, J. Fluid Mech., 711 (2012), 437–468 | DOI | MR | Zbl
[15] P. J.M. Ferrer, G. Lehnasch, A. Mura, “Compressibility and heat release effects in high-speed reactive mixing layers I.: Growth rates and turbulence characteristics”, Combust. Flame, 180 (2017), 284–303 | DOI
[16] Q. Dai, T. Jin, K. Luo, J. Fan, “Direct numerical simulation of particle dispersion in a three-dimensional spatially developing compressible mixing layer”, Phys. Fluids, 30 (2018), 113301 | DOI
[17] A. Vadrot, A. Giauque, C. Corre, “Analysis of turbulence characteristics in a temporal dense gas compressible mixing layer using direct numerical simulation”, J. Fluid Mech., 893 (2020), A10 | DOI | MR | Zbl
[18] G. S. Jiang, C. W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl
[19] D. Zhang, J. Tan, X. Yao, “Direct numerical simulation of spatially developing highly compressible mixing layer: structural evolution and turbulent statistics”, Phys. Fluids, 31 (2019), 036102 | DOI
[20] K. N. Volkov, “Raschet svobodnogo sloia smesheniia na osnove metoda modelirovaniia krupnykh vikhrei”, Matem. Modelirovanie, 19:9 (2007), 114–128 | MR | Zbl
[21] B. V. Rogov, M. N. Mikhailovskaya, “On the convergence of compact difference schemes”, Math. Models Comput. Simul., 1:1 (2009), 91–104 | DOI | MR | Zbl
[22] M. N. Mikhailovskaya, B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations”, Comput. Math. Math. Phys., 52:4 (2012), 578–600 | DOI | MR | Zbl
[23] B. V. Rogov, “Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equations”, Appl. Numer. Math., 139 (2019), 136–155 | DOI | MR | Zbl
[24] A. I. Tolstykh, Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR
[25] M. D. Bragin, “Bicompact schemes for compressible Navier-Stokes equations”, Dokl. Math., 107:1 (2023), 12–16 | DOI | MR | Zbl
[26] B. V. Rogov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations”, Comput. Math. Math. Phys., 53:2 (2013), 205–214 | DOI | DOI | MR | Zbl
[27] M. D. Bragin, “Implicit-explicit bicompact schemes for hyperbolic systems of conservation laws”, Math. Models Comput. Simul, 15:1 (2023), 1–12 | DOI | DOI | MR
[28] M. D. Bragin, “High-order bicompact schemes for the quasilinear multidimensional diffusion equation”, Appl. Numer. Math., 174 (2022), 112–126 | DOI | MR
[29] M. D. Bragin, B. V. Rogov, “Bicompact schemes for the multidimensional convection-diffusion equation”, Comput. Math. Math. Phys., 61:4 (2021), 607–624 | DOI | DOI | MR | Zbl
[30] M. D. Bragin, B. V. Rogov, “Accuracy of bicompact schemes in the problem of Taylor-Green vortex decay”, Comput. Math. Math. Phys., 61:11 (2021), 1723–1742 | DOI | MR | Zbl
[31] G. I. Marchuk, Metody rasshchepleniia, Nauka, M., 1988
[32] M. D. Bragin, “Influence of monotonization on the spectral resolution of bicompact schemes in the inviscid Taylor-Green vortex problem”, Comput. Math. Math. Phys., 62:4 (2022), 608–623 | DOI | MR | Zbl
[33] S. Stanley, S. Sarkar, “Simulations of spatially developing two-dimensional shear layers and jets”, Theoret. Comput. Fluid Dynamics, 9 (1997), 121–147 | DOI | Zbl
[34] M. D. Bragin, B. V. Rogov, “Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations”, Appl. Numer. Math., 151 (2020), 229–245 | DOI | MR | Zbl
[35] T. Rossmann, M. G. Mungal, R. K. Hanson, “Evolution and growth of large-scale structures in high compressibility mixing layers”, J. Turbul., 3:9 (2002)