Numerical modeling of compressible mixing layers with a bicompact scheme
Matematičeskoe modelirovanie, Tome 36 (2024) no. 2, pp. 3-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

A bicompact scheme for the Navier-Stokes equations is considered in the case of a compressible heat-conducting fluid. The scheme is constructed using the splitting by physical processes, has the approximation of fourth order in space and second in time. New, conservative formulas are derived for transitions between two different representations of numerical solution in bicompact schemes for hyperbolic and parabolic equations. The parallel implementation of the bicompact scheme is tested for strong scalability. The bicompact scheme is applied to the three-dimensional direct numerical simulation of the mixing layer with convective Mach numbers of 0.4 and 0.8. In the calculated flows, the zone of turbulent mixing is resolved in detail, and the phenomena observed in experiments are adequately reproduced. Good quantitative agreement is demonstrated with the simulations carried out by other authors.
Keywords: Navier-Stokes equations, mixing layer, compact schemes, bicompact schemes, high-order schemes.
Mots-clés : compressible fluid
@article{MM_2024_36_2_a0,
     author = {M. D. Bragin},
     title = {Numerical modeling of compressible mixing layers with a bicompact scheme},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--24},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_2_a0/}
}
TY  - JOUR
AU  - M. D. Bragin
TI  - Numerical modeling of compressible mixing layers with a bicompact scheme
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 3
EP  - 24
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_2_a0/
LA  - ru
ID  - MM_2024_36_2_a0
ER  - 
%0 Journal Article
%A M. D. Bragin
%T Numerical modeling of compressible mixing layers with a bicompact scheme
%J Matematičeskoe modelirovanie
%D 2024
%P 3-24
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_2_a0/
%G ru
%F MM_2024_36_2_a0
M. D. Bragin. Numerical modeling of compressible mixing layers with a bicompact scheme. Matematičeskoe modelirovanie, Tome 36 (2024) no. 2, pp. 3-24. http://geodesic.mathdoc.fr/item/MM_2024_36_2_a0/

[1] D. W. Bogdanoff, “Compressibility effects in turbulent shear layers”, AIAA Journal, 21:6 (1983), 926–927 | DOI

[2] D. Papamoschou, A. Roshko, “The compressible turbulent shear layer: an experimental study”, J. Fluid Mech, 197 (1988), 453–477 | DOI | MR

[3] G. S. Elliott, M. Samimy, “Compressibility effects in free shear layers”, Phys. Fluids A, 2:7 (1990), 1231–1240 | DOI

[4] S. G. Goebel, J. C. Dutton, “Experimental study of compressible turbulent mixing layers”, AIAA Journal, 29:4 (1991), 538–546 | DOI

[5] S. K. Lele, Direct numerical simulation of compressible free shear flows, AIAA Paper 89-0374, 1989, 16 pp.

[6] N. D. Sandham, W. C. Reynolds, “Compressible mixing layer: linear theory and direct simulation”, AIAA Journal, 28:4 (1990), 618–624 | DOI

[7] K. H. Luo, N. D. Sandham, “On the formation of small scales in a compressible mixing layer”, Fluid Mechanics and Its Applications, 26 (1994), 335–346 | DOI

[8] A. W. Vreman, N. D. Sandham, K. H. Luo, “Compressible mixing layer growth rate and turbulence characteristics”, J. Fluid Mech, 320 (1996), 235–258 | DOI | Zbl

[9] J. B. Freund, S. K. Lele, P. Moin, “Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate”, J. Fluid. Mech., 421 (2000), 229–267 | DOI | MR | Zbl

[10] C. Pantano, S. Sarkar, “A study of compressibility effects in the high-speed turbulent shear layer using direct simulation”, J. Fluid Mech., 451 (2002), 329–371 | DOI | MR | Zbl

[11] Q. Li, S. Fu, “Numerical simulation of high-speed planar mixing layer”, Comput. Fluids, 32 (2003), 1357–1377 | DOI | Zbl

[12] S. Fu, Q. Li, “Numerical simulation of compressible mixing layers”, Int. J. Heat Fluid Flow, 27 (2006), 895–901 | DOI

[13] X. T. Shi, J. Chen, W. T. Bi, C. W. Shu, Z. S. She, “Numerical simulations of compressible mixing layers with a discontinuous Galerkin method”, Acta Mech. Sin., 27:3 (2011), 318–329 | DOI | MR

[14] Q. Zhou, F. He, M. Y. Shen, “Direct numerical simulation of a spatially developing compressible plane mixing layer: flow structures and mean flow properties”, J. Fluid Mech., 711 (2012), 437–468 | DOI | MR | Zbl

[15] P. J.M. Ferrer, G. Lehnasch, A. Mura, “Compressibility and heat release effects in high-speed reactive mixing layers I.: Growth rates and turbulence characteristics”, Combust. Flame, 180 (2017), 284–303 | DOI

[16] Q. Dai, T. Jin, K. Luo, J. Fan, “Direct numerical simulation of particle dispersion in a three-dimensional spatially developing compressible mixing layer”, Phys. Fluids, 30 (2018), 113301 | DOI

[17] A. Vadrot, A. Giauque, C. Corre, “Analysis of turbulence characteristics in a temporal dense gas compressible mixing layer using direct numerical simulation”, J. Fluid Mech., 893 (2020), A10 | DOI | MR | Zbl

[18] G. S. Jiang, C. W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl

[19] D. Zhang, J. Tan, X. Yao, “Direct numerical simulation of spatially developing highly compressible mixing layer: structural evolution and turbulent statistics”, Phys. Fluids, 31 (2019), 036102 | DOI

[20] K. N. Volkov, “Raschet svobodnogo sloia smesheniia na osnove metoda modelirovaniia krupnykh vikhrei”, Matem. Modelirovanie, 19:9 (2007), 114–128 | MR | Zbl

[21] B. V. Rogov, M. N. Mikhailovskaya, “On the convergence of compact difference schemes”, Math. Models Comput. Simul., 1:1 (2009), 91–104 | DOI | MR | Zbl

[22] M. N. Mikhailovskaya, B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations”, Comput. Math. Math. Phys., 52:4 (2012), 578–600 | DOI | MR | Zbl

[23] B. V. Rogov, “Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equations”, Appl. Numer. Math., 139 (2019), 136–155 | DOI | MR | Zbl

[24] A. I. Tolstykh, Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR

[25] M. D. Bragin, “Bicompact schemes for compressible Navier-Stokes equations”, Dokl. Math., 107:1 (2023), 12–16 | DOI | MR | Zbl

[26] B. V. Rogov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations”, Comput. Math. Math. Phys., 53:2 (2013), 205–214 | DOI | DOI | MR | Zbl

[27] M. D. Bragin, “Implicit-explicit bicompact schemes for hyperbolic systems of conservation laws”, Math. Models Comput. Simul, 15:1 (2023), 1–12 | DOI | DOI | MR

[28] M. D. Bragin, “High-order bicompact schemes for the quasilinear multidimensional diffusion equation”, Appl. Numer. Math., 174 (2022), 112–126 | DOI | MR

[29] M. D. Bragin, B. V. Rogov, “Bicompact schemes for the multidimensional convection-diffusion equation”, Comput. Math. Math. Phys., 61:4 (2021), 607–624 | DOI | DOI | MR | Zbl

[30] M. D. Bragin, B. V. Rogov, “Accuracy of bicompact schemes in the problem of Taylor-Green vortex decay”, Comput. Math. Math. Phys., 61:11 (2021), 1723–1742 | DOI | MR | Zbl

[31] G. I. Marchuk, Metody rasshchepleniia, Nauka, M., 1988

[32] M. D. Bragin, “Influence of monotonization on the spectral resolution of bicompact schemes in the inviscid Taylor-Green vortex problem”, Comput. Math. Math. Phys., 62:4 (2022), 608–623 | DOI | MR | Zbl

[33] S. Stanley, S. Sarkar, “Simulations of spatially developing two-dimensional shear layers and jets”, Theoret. Comput. Fluid Dynamics, 9 (1997), 121–147 | DOI | Zbl

[34] M. D. Bragin, B. V. Rogov, “Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations”, Appl. Numer. Math., 151 (2020), 229–245 | DOI | MR | Zbl

[35] T. Rossmann, M. G. Mungal, R. K. Hanson, “Evolution and growth of large-scale structures in high compressibility mixing layers”, J. Turbul., 3:9 (2002)