Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_1_a9, author = {A. Stabnikov and A. Garbaruk and A. Matyushenko}, title = {Comparative analysis of algebraic models of laminar-turbulent transition}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {141--157}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_1_a9/} }
TY - JOUR AU - A. Stabnikov AU - A. Garbaruk AU - A. Matyushenko TI - Comparative analysis of algebraic models of laminar-turbulent transition JO - Matematičeskoe modelirovanie PY - 2024 SP - 141 EP - 157 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2024_36_1_a9/ LA - ru ID - MM_2024_36_1_a9 ER -
A. Stabnikov; A. Garbaruk; A. Matyushenko. Comparative analysis of algebraic models of laminar-turbulent transition. Matematičeskoe modelirovanie, Tome 36 (2024) no. 1, pp. 141-157. http://geodesic.mathdoc.fr/item/MM_2024_36_1_a9/
[1] P. A. Durbin, “Perspectives on the Phenomenology and Modeling of Boundary Layer Transition”, Flow Turbul. Combust., 99:1 (2017), 1–23
[2] A. Krumbein, D. G. Francois, N. Krimmelbein, “Transport-based Transition Prediction for the Common Research Model Natural Laminar Flow Configuration”, AIAA SCITECH 2022 Forum (Virtual Event, San Diego, CA, American Institute of Aeronautics and Astronautics), 2022
[3] R. Lopes, L. Eca, G. Vaz, “On the Numerical Behavior of RANS-Based Transition Models”, J. Fluids Eng., 142:5 (2020), 051503, 14 pp.
[4] R. B. Langtry, F. R. Menter, “Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes”, AIAA J., 47:12 (2009), 2894–2906
[5] F. R. Menter et al., “A One-Equation Local Correlation-Based Transition Model”, Flow Turbul. Combust., 95:4 (2015), 583–619
[6] A. S. Stabnikov, A. V. Garbaruk, “Comparative analysis of transition models at different farfield turbulence intensities”, J. Phys. Conf. Ser., 929 (2017), 012130, 7 pp.
[7] S. C. Cakmakcioglu et al, “A Revised One-Equation Transitional Model for External Aerodynamics”, AIAA SCITECH 2022 Forum (Virtual Event, San Diego, CA, American Institute of Aeronautics and Astronautics), 20 pp.
[8] P. Spalart, S. Allmaras, “A one-equation turbulence model for aerodynamic flows”, 30th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, NV, U.S.A., 1992, 22 pp.
[9] F. R. Menter, M. Kuntz, R. Langtry, “Ten Years of Industrial Experience with the SST Turbulence Model”, Heat Mass Transf., 4 (2003), 8 pp.
[10] F. R. Menter et al., “An Algebraic LCTM Transition Model”, Proc. of the ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurement, ETMM13 (Rhodes, Greece, 2021), 6 pp.
[11] J. P.S. Sandhu, S. Ghosh, A local correlation-based zero-equation transition model, Comput. Fluids, 214, 2021, 54 pp.
[12] A. Stabnikov, A. Garbaruk, “An algebraic transition model for simulation of turbulent flows based on a Detached Eddy Simulation approach”, St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 15:1 (2022), 16–29
[13] D. K. Walters, D. Cokljat, “A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flow”, J. Fluids Eng., 130:12 (2008), 121401, 15 pp.
[14] M. Shur, M. Strelets, A. Travin, “High-Order Implicit Multi-Block Navier-Stokes Code: Ten-Years Experience of Application to RANS/DES/LES/DNS of Turbulent Flows”, Invited lecture, 7th Symp. on Overset Composite Grids and Solution Technol. (Huntington Beach, USA, 2004)
[15] S. Rogers, D. Kwak, “An upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations”, 6th Applied Aerodynamics Conference, American Institute of Aeronautics and Astronautics, Williamsburg, VA, U.S.A., 1988, 492–502
[16] G. B. Schubauer, P. S. Klebanoff, Contributions on the mechanics of boundary-layer transition, NACA-TR-1289, 1955, 853–863
[17] A. M. Savill, “Evaluating turbulence model predictions of transition: An ERCOFTAC Special Interest Group Project”, Appl. Sci. Res., 51:1-2 (1993), 555–562
[18] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA J., 32:8 (1994), 1598–1605
[19] D. M. Somers, Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications, Technical Memorandum (TM) NASA Technical Paper No 1861, 1981, 104 pp.
[20] R. J. McGhee, Experimental Results for a Flapped Natural-Laminar-Flow Airfoil with High Lift/Drag Ratio, NASA Technical Memorandum No 85788, 1984
[21] R. J. McGhee, B. S. Walker, B. F. Millard, Experimental Results for the Eppler 387 airfoil at Low Reynolds Numbers in the Langley Low-Turbulence Pressure Tunnel, NASA Technical Memorandum (TM) No 19890001471, 1988, 234 pp.
[22] D. M. Somers, Design and Experimental Results for the S809Airfoil: NRELlSR-440-6918, UC Category: 1213. DE97000206, National Renewable Energy Laboratory, 1997, 103 pp.
[23] H. Lee, S. H. Kang, “Flow Characteristics of Transitional Boundary Layers on an Airfoil in Wakes”, J. Fluids Eng., 122:3 (2000), 522–532