Comparative analysis of algebraic models of laminar-turbulent transition
Matematičeskoe modelirovanie, Tome 36 (2024) no. 1, pp. 141-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the results of an extensive testing of four recently proposed algebraic laminar-turbulent transition (LTT) models, which are significantly more computationally effective than differential models while being potentially on par in accuracy. The models chosen for evaluation, namely, SST KD, SST k$\gamma$, SST alg-$\gamma$ and SA BCM models, were implemented in the in-house code NTS and verified by comparing obtained results with those published by the models' authors. The experimental database used for the evaluation of the models includes transitional boundary layers at different free-flow turbulence intensities with and without pressure gradient, four airfoil flows with different LTT scenarios, and a tandem of two airfoils. It is found that at low levels of turbulence intensity, results of the SA BCM and SST k$\gamma$ models may depend on initial conditions, which does not allow to recommend them for engineering applications. The best results, comparable in accuracy to those of differential models, were obtained using the SST alg-$\gamma$ model.
Mots-clés : laminar-turbulent transition, pressure gradient.
Keywords: Reynolds equations, turbulence models, boundary layer, turbulence intensity
@article{MM_2024_36_1_a9,
     author = {A. Stabnikov and A. Garbaruk and A. Matyushenko},
     title = {Comparative analysis of algebraic models of laminar-turbulent transition},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {141--157},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_1_a9/}
}
TY  - JOUR
AU  - A. Stabnikov
AU  - A. Garbaruk
AU  - A. Matyushenko
TI  - Comparative analysis of algebraic models of laminar-turbulent transition
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 141
EP  - 157
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_1_a9/
LA  - ru
ID  - MM_2024_36_1_a9
ER  - 
%0 Journal Article
%A A. Stabnikov
%A A. Garbaruk
%A A. Matyushenko
%T Comparative analysis of algebraic models of laminar-turbulent transition
%J Matematičeskoe modelirovanie
%D 2024
%P 141-157
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_1_a9/
%G ru
%F MM_2024_36_1_a9
A. Stabnikov; A. Garbaruk; A. Matyushenko. Comparative analysis of algebraic models of laminar-turbulent transition. Matematičeskoe modelirovanie, Tome 36 (2024) no. 1, pp. 141-157. http://geodesic.mathdoc.fr/item/MM_2024_36_1_a9/

[1] P. A. Durbin, “Perspectives on the Phenomenology and Modeling of Boundary Layer Transition”, Flow Turbul. Combust., 99:1 (2017), 1–23

[2] A. Krumbein, D. G. Francois, N. Krimmelbein, “Transport-based Transition Prediction for the Common Research Model Natural Laminar Flow Configuration”, AIAA SCITECH 2022 Forum (Virtual Event, San Diego, CA, American Institute of Aeronautics and Astronautics), 2022

[3] R. Lopes, L. Eca, G. Vaz, “On the Numerical Behavior of RANS-Based Transition Models”, J. Fluids Eng., 142:5 (2020), 051503, 14 pp.

[4] R. B. Langtry, F. R. Menter, “Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes”, AIAA J., 47:12 (2009), 2894–2906

[5] F. R. Menter et al., “A One-Equation Local Correlation-Based Transition Model”, Flow Turbul. Combust., 95:4 (2015), 583–619

[6] A. S. Stabnikov, A. V. Garbaruk, “Comparative analysis of transition models at different farfield turbulence intensities”, J. Phys. Conf. Ser., 929 (2017), 012130, 7 pp.

[7] S. C. Cakmakcioglu et al, “A Revised One-Equation Transitional Model for External Aerodynamics”, AIAA SCITECH 2022 Forum (Virtual Event, San Diego, CA, American Institute of Aeronautics and Astronautics), 20 pp.

[8] P. Spalart, S. Allmaras, “A one-equation turbulence model for aerodynamic flows”, 30th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, NV, U.S.A., 1992, 22 pp.

[9] F. R. Menter, M. Kuntz, R. Langtry, “Ten Years of Industrial Experience with the SST Turbulence Model”, Heat Mass Transf., 4 (2003), 8 pp.

[10] F. R. Menter et al., “An Algebraic LCTM Transition Model”, Proc. of the ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurement, ETMM13 (Rhodes, Greece, 2021), 6 pp.

[11] J. P.S. Sandhu, S. Ghosh, A local correlation-based zero-equation transition model, Comput. Fluids, 214, 2021, 54 pp.

[12] A. Stabnikov, A. Garbaruk, “An algebraic transition model for simulation of turbulent flows based on a Detached Eddy Simulation approach”, St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 15:1 (2022), 16–29

[13] D. K. Walters, D. Cokljat, “A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flow”, J. Fluids Eng., 130:12 (2008), 121401, 15 pp.

[14] M. Shur, M. Strelets, A. Travin, “High-Order Implicit Multi-Block Navier-Stokes Code: Ten-Years Experience of Application to RANS/DES/LES/DNS of Turbulent Flows”, Invited lecture, 7th Symp. on Overset Composite Grids and Solution Technol. (Huntington Beach, USA, 2004)

[15] S. Rogers, D. Kwak, “An upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations”, 6th Applied Aerodynamics Conference, American Institute of Aeronautics and Astronautics, Williamsburg, VA, U.S.A., 1988, 492–502

[16] G. B. Schubauer, P. S. Klebanoff, Contributions on the mechanics of boundary-layer transition, NACA-TR-1289, 1955, 853–863

[17] A. M. Savill, “Evaluating turbulence model predictions of transition: An ERCOFTAC Special Interest Group Project”, Appl. Sci. Res., 51:1-2 (1993), 555–562

[18] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA J., 32:8 (1994), 1598–1605

[19] D. M. Somers, Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications, Technical Memorandum (TM) NASA Technical Paper No 1861, 1981, 104 pp.

[20] R. J. McGhee, Experimental Results for a Flapped Natural-Laminar-Flow Airfoil with High Lift/Drag Ratio, NASA Technical Memorandum No 85788, 1984

[21] R. J. McGhee, B. S. Walker, B. F. Millard, Experimental Results for the Eppler 387 airfoil at Low Reynolds Numbers in the Langley Low-Turbulence Pressure Tunnel, NASA Technical Memorandum (TM) No 19890001471, 1988, 234 pp.

[22] D. M. Somers, Design and Experimental Results for the S809Airfoil: NRELlSR-440-6918, UC Category: 1213. DE97000206, National Renewable Energy Laboratory, 1997, 103 pp.

[23] H. Lee, S. H. Kang, “Flow Characteristics of Transitional Boundary Layers on an Airfoil in Wakes”, J. Fluids Eng., 122:3 (2000), 522–532