Parameters estimation in the traffic flow model
Matematičeskoe modelirovanie, Tome 36 (2024) no. 1, pp. 131-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a parameters estimation in the traffic flow model. The model is represented by a system of differential equations with a time delay. The main result of this paper is the calculation of the range of values for the parameters describing the intensity of acceleration and braking, as well as a coefficient that describes how smoothly the pursuing vehicle adjusts its speed to the one in front. The parameters of the model were estimated with analytical calculations and numerical experiments. For the numerical experiment a special computer program was developed.
Keywords: mathematical model, traffic flow dynamics, delay differential equation.
@article{MM_2024_36_1_a8,
     author = {M. A. Pogrebnyak},
     title = {Parameters estimation in the traffic flow model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {131--140},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_1_a8/}
}
TY  - JOUR
AU  - M. A. Pogrebnyak
TI  - Parameters estimation in the traffic flow model
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 131
EP  - 140
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_1_a8/
LA  - ru
ID  - MM_2024_36_1_a8
ER  - 
%0 Journal Article
%A M. A. Pogrebnyak
%T Parameters estimation in the traffic flow model
%J Matematičeskoe modelirovanie
%D 2024
%P 131-140
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_1_a8/
%G ru
%F MM_2024_36_1_a8
M. A. Pogrebnyak. Parameters estimation in the traffic flow model. Matematičeskoe modelirovanie, Tome 36 (2024) no. 1, pp. 131-140. http://geodesic.mathdoc.fr/item/MM_2024_36_1_a8/

[1] A. V. Gasnikov i dr., Vvedeniye v matematicheskoye modelirovaniye transportnykh potokov, MTsNMO, M., 2022, 425 pp.

[2] M. Treiber, D. Helbing, Explanation of observed features of self-organization in traffic flow, 1999, arXiv: cond-mat/9901239 | Zbl

[3] M. Treiber, A. Hennecke, D. Helbing, “Congested traffic states in empirical observations and microscopic simulations”, Phys. Rev. E, 62 (2000), 1805–1824 | DOI

[4] V. V. Kurts, I. E. Anufriev, “Novye mikroskopicheskie modeli avtomobilnogo trafika”, Nauchno-tekhnicheskie vedomosti SPbGP. Fiziko-matemat. nauki, 2012, no. 4, 50–56

[5] V. V. Kurtc, I. E. Anufriev, “Car-Following Model with Explicit Reaction-Time Delay: Linear Stability Analysis of a Uniform Solution on a Ring”, Mathematical Models and Computer Simulations, 9:6 (2017), 679–687 | DOI | MR

[6] M. A. Pogrebnyak, “Traffic flow model”, MM CS, 15:3 (2023), 436–444 | DOI

[7] Pogrebniak M.A. (zaiavitel i pravoobladatel), Programma dlia modelirovaniia dvizheniia transportnogo potoka «TrafficFlowSimulation v1.0», Svidetelstvo o gosudarstvennoi registratsii programmy dlia EVM 2023611363 RF, No 2023610182, zaiavl. 09.01.2023, opubl 19.01.2023, 1 pp.

[8] S. P. Pozhidayev, “Otsenka vremeni razgona avtomobiley”, Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universitet, 2014, no. 5 (49), 74–76

[9] V. A. Stukanov, Osnovy teorii avtomobilnykh dvigateley i avtomobilya, FORUM: INFRA-M, M., 2005, 368 pp.

[10] V. N. Kravets, Teoriya avtomobilya, uchebnik, 2-e izd.. pererabot., Nizhegorod. gos. tekhn. un-t im Alekseyeva, Nizhniy Novgorod, 2013, 413 pp.