Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_1_a7, author = {A. Yu. Perevaryukha}, title = {Phenomenological models of three scenarios of local coronavirus epidemics}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {105--130}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_1_a7/} }
A. Yu. Perevaryukha. Phenomenological models of three scenarios of local coronavirus epidemics. Matematičeskoe modelirovanie, Tome 36 (2024) no. 1, pp. 105-130. http://geodesic.mathdoc.fr/item/MM_2024_36_1_a7/
[1] A. V. Lasunskii, “Stability of stationary states in some population models with variable coefficients”, Math. Models and Computer Simulations, 1:2 (2009), 335–342 | DOI | MR
[2] A. Yu. Perevaryukha, “Phenomenological Computational Model for the Development of a Population Outbreak of Insects with Its Bifurcational Completion”, Math. Models and Computer Simulations, 10:4 (2018), 501–511 | DOI | MR | Zbl
[3] V. G. Il'ichev, “Universal stock constants in models of competition”, Math. Models and Computer Simulations, 8:1 (2016), 73–83 | DOI | MR | Zbl
[4] A. Y. Shcheglov, S. V. Netessov, “The Reconstruction of Functional Coefficients for a Quasi-Stable Population Dynamics Model”, Math. Models and Computer Simulations, 14:5 (2022), 808–818 | DOI | DOI | MR
[5] V. D. Perminov, M. A. Kornilina, “Individuum-orientirovannaia model rasprostraneniia epidemii v gorodskikh usloviiakh”, Mat. modelir., 19:5 (2007), 116–127 | Zbl
[6] T. R. Amanbaev, S. J. Antony, “Development of Mathematical Models Taking into Account the Effect of Isolating Individuals in a Population”, Math. Models and Computer Simulations, 14:3 (2022), 466–479 | DOI | DOI | MR
[7] O. Krivorotko, “Agent-based modeling of COVID-19 outbreaks for New York state and UK: parameter identification algorithm”, Infectious Disease Modell, 7 (2022), 30–44 | DOI
[8] V. Petrakova, O. Krivorotko, “Mean field game for modeling of COVID-19 spread”, Journal of Mathematical Analysis and Applications, 514:1 (2022), 126–141 | DOI | MR
[9] V. Yu. Osipov, S. V. Kuleshov, A. A. Zaitseva, A. Yu. Aksenov, “An approach to localizing the source of the COVID-19 epidemic in Russia based on mathematical modeling”, Informatics and Automation, 2021, no. 5, 1065–1089
[10] I. D. Kolesin, E. M. Zhitkova, “Was There a Period of Latent Development of COVID-19 in St. Petersburg? Mathematical Simulation Results and Facts”, Math. Models and Computer Simulations, 15:6 (2023), 1037–1044 | DOI | DOI | MR | MR
[11] V. Ya. Kisselevskaya-Babinina, A.A. Romanyukha, T.E. Sannikova, “Mathematical Model of COVID-19 Progression: Prediction of Severity and Outcome”, Math. Models and Computer Simulations, 15:6 (2023), 987–998 | DOI | DOI | MR | Zbl
[12] M. Lenart, M. Gorecka, M. Bochenek, E. Barreto-Duran, “SARS-CoV-2 infection impairs NK cell functions via activation of the LLT1-CD161 axis”, Front. Immunol., 14 (2023), 1123155 | DOI
[13] H. Tang, Y. Shao, Y. Huang, “Evolutionary characteristics of SARS-CoV-2 Omicron subvariants adapted to the host”, Sig. Transduct. Target Ther., 8 (2023), 211–221 | DOI
[14] J. P.A. Ioannidis, S. Cripps, M. Tanner, “Forecasting for COVID-19 has failed”, International Journal of Forecasting, 2022, no. 2, 423–438 | DOI
[15] V. Chin, N. I. Samia, R. Marchant, “A case study in model failure? COVID-19 daily deaths and ICU bed utilisation predictions in New York”, European J. of Epidemiology, 35 (2020), 733–742 | DOI
[16] S. Moein, N. Nickaeen, A. Roointan, “Inefficiency of SIR models in forecasting COVID-19 epidemic: a case study of Isfahan”, Scientific Reports, 11 (2021), 4725 | DOI
[17] T. M. Delorey, C. G.K. Ziegler, G. Heimberg, “COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets”, Nature, 595 (2021), 107–113 | DOI
[18] E. Rocchi, S. Peluso, D. Sisti, M. Carletti, “A New Epidemic Model for the COVID-19 Pandemic: The-SI(R)D Model”, BioMedInformatics, 2022, no. 2, 398–404 | DOI
[19] K. S. Tan, S. W.X. Ong, M. H. Koh, “SARS-CoV-2 Omicron variant shedding during respiratory activities”, International Journal of Infectious Diseases, 131 (2023), 19–25 | DOI
[20] K. D. Lamb, M. M. Luka, M. Saathoff, R. Orton, SARS-CoV-2's evolutionary capacity is mostly driven by host antiviral molecules, https://www.biorxiv.org/content/10.1101/2023.04.07.536037v1
[21] L. Bautista, G. Conesa, R. Caravaca, “COVID-19 effective reproduction number determination: an application, and a review of issues and influential factors”, Epidemiologic Methods, 10 (2021), 20200048 | DOI
[22] G. E. Hutchinson, “Circular causal systems in ecology”, Ann. N.Y. Acad. Sci., 50 (1948), 221–246 | DOI
[23] I. S. Kashchenko, E. M. Glushevskii, “Local dynamics of equation with periodically distributed delay”, Theoret. and Math. Phys., 212 (2022), 1125–1136 | DOI | MR | Zbl
[24] R. Cilia, “SARS-CoV-2-specific CD4+ and CD8+ T cell responses can originate from cross-reactive CMV-specific T cells”, eLife, 11 (2022), e82050 | DOI
[25] A. V. Nikitina, “Study of the spread of viral diseases based on modifications of the SIR model”, Computational Mathematics and Information Technologies, 2020, no. 1, 19–30
[26] A. Y. Perevaryukha, “A Continuous Model of Three Scenarios of the Infection Process with Delayed Immune Response Factors”, Biophysics, 66 (2021), 327–348 | DOI
[27] I. V. Trofimova, A. Y. Perevaryukha, A. B. Manvelova, “Adequacy of Interpretation of Monitoring Data on Biophysical Processes in Terms of the Theory of Bifurcations and Chaotic Dynamics”, Technical Physics Letters, 48 (2022), 305–310 | DOI
[28] N. Fabiano, S. N. Radenovic, “The second COVID-19 wave of 2020 in Italy: a brief analysis”, Military Technical Courier, 69:1 (2021), 1–7
[29] A. V. Shabunin, “Hybrid SIRS-model of the spread of infections”, Applied nonlinear dynamics, 30:6 (2022), 717–731
[30] M. S. Abotaleb, T. A. Makarovskikh, “Development of algorithms for choosing the best time series models and neural networks to predict COVID-19 cases”, Bulletin of South Ural State University, 21:3 (2021), 26–35
[31] A. V. Zaykovskaya, A. V. Gladysheva, M. Y. Kartashov, “Izucheniye v usloviyakh in vitro biologicheskikh svoystv shtammov koronavirusa SARS-COV-2, otnosyashchikhsya k razlichnym geneticheskim variantam”, Problemy osobo opasnykh infektsiy, 2022, no. 1, 94–100
[32] V. I. Vechorko, O. V. Averkov, A. A. Zimin, “Novyy shtamm SARS-COV-2 Omikron klinika, lecheniye, profilaktika (obzor literatury)”, Kardiovaskulyarnaya terapiya i profilaktika, 2022, no. 6, 89–98
[33] S. J. Silva, K. Pardee, L. Pena, A. Kohl, “Recent insights into SARS-COV-2 omicron variant”, Reviews in Medical Virology, 33 (2022), e2373 | DOI
[34] F. Juul, H. C. Jodal, I. Barua, “Mortality in Norway and Sweden during the COVID-19 pandemic”, Scandinavian J. of Public Health, 50 (2022), 38–45 | DOI
[35] N. Brusselaers, D. Steadson, K. Bjorklund, “Evaluation of science advice during the COVID-19 pandemic in Sweden”, Humanities Social Sci. Communications, 9 (2022), 91 | DOI
[36] C. Phetsouphanh, D. R. Darley, D. B. Wilson, “Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection”, Nature Immunology, 2022, 210–216 | DOI
[37] H. Oshitani, “COVID lessons from Japan: the right messaging empowers citizens”, Nature, 605 (2022), 589 | DOI
[38] A. Y. Popova, E. B. Ezhlova, A. A. Melnikova, N. S. Bashketova, “Populiatsionnyi immunitet k SARS-CoV-2 sredi naseleniia Sankt-Peterburga v period epidemii COVID-19”, Problemy osobo opasnykh infektsii, 2020, no. 3, 124–130
[39] L. Corey, C. Beyrer, M. Cohen, “SARS-CoV-2 variants in patients with immunosuppression”, The New England Journal of Medicine, 385 (2021), 562–566 | DOI
[40] C. M. Arieta, Y. J. Xie, D. A. Rothenberg, “The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection”, Cell, 2023, 2023.04.007
[41] L. Bull-Otterson, S. Baca, S. Saydah, “Post COVID Conditions Among Adult COVID-19 Survivors Aged 18-64 and65 Years - United States, March 2020-November 2021”, MMWR Morb. Mortal Rep, 71 (2022), 713–717 | DOI
[42] E. L. Shrock, R. T. Timms, “Germline-encoded amino acid-binding motifs drive immune-dominant public antibody responses”, Science, 380 (2023), 798–816 | DOI
[43] P. V. Markov, M. Ghafari, M. Beer, “The evolution of SARS-CoV-2”, Nature Reviews Microbiology, 21 (2023), 195–210 | DOI
[44] D. M. Patrick, M. Petric, D. M. Skowronski, R. Guasparini, “An outbreak of human coronavirus OC43 infection and serological cross-reactivity with SARS coronavirus”, Canadian J. Infectious Diseases and Medical Microbiology, 17 (2006), 330–336 | DOI
[45] A. Y. Perevaryukha, “An iterative continuous-event model of the population outbreak of a phytophagous hemipteran”, Biophysics, 61:2 (2016), 334–341 | DOI