Cluster capillary core model for calculation of relative phase permeability for oil and water filtration
Matematičeskoe modelirovanie, Tome 36 (2024) no. 1, pp. 85-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article describes a physical and mathematical model of steady-state flow of oil and water mixture in the pore space of a core, represented as a set of capillary clusters. The developed technique allows to calculate the functions of relative phase permeabilities based on the data of standard laboratory core analysis and experiments on single-phase fluid filtration. As a result of regression analysis of laboratory data on terrigenous rocks of Western and Eastern Siberia oil and gas fields, multi-parameter dependences of the parameters of the interfacial interaction function on reservoir properties and parameters of the capillary cluster were obtained. It has been established that the results of relative phase permeability calculation using the proposed computational-experimental method are in good agreement with the experimental data.
Keywords: relative phase permeability, two-phase filtration, water, cluster capillary model, digital core model, interfacial interaction function, filtration-capacitive properties.
Mots-clés : oil
@article{MM_2024_36_1_a6,
     author = {M. A. Zagorovskiy and A. B. Shabarov and S. V. Stepanov},
     title = {Cluster capillary core model for calculation of relative phase permeability for oil and water filtration},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {85--104},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_1_a6/}
}
TY  - JOUR
AU  - M. A. Zagorovskiy
AU  - A. B. Shabarov
AU  - S. V. Stepanov
TI  - Cluster capillary core model for calculation of relative phase permeability for oil and water filtration
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 85
EP  - 104
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_1_a6/
LA  - ru
ID  - MM_2024_36_1_a6
ER  - 
%0 Journal Article
%A M. A. Zagorovskiy
%A A. B. Shabarov
%A S. V. Stepanov
%T Cluster capillary core model for calculation of relative phase permeability for oil and water filtration
%J Matematičeskoe modelirovanie
%D 2024
%P 85-104
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_1_a6/
%G ru
%F MM_2024_36_1_a6
M. A. Zagorovskiy; A. B. Shabarov; S. V. Stepanov. Cluster capillary core model for calculation of relative phase permeability for oil and water filtration. Matematičeskoe modelirovanie, Tome 36 (2024) no. 1, pp. 85-104. http://geodesic.mathdoc.fr/item/MM_2024_36_1_a6/

[1] M. Honarpour, L. Koederitz, A. H. Harvey, Relative Permeability of Petroleum Reservoirs, CRC Press Inc, 1986, 143 pp.

[2] V. A. Balashov, A. A. Zlotnik, E. B. Savenkov, “Chislenyi algoritm dlia rascheta trekhmernykh dvukhfaznykh techenii s poverkhnostnymi effektami v oblastiakh s vokselnoy geometriei”, Preprinty IPM im. M.V. Keldysha, 2017, 091, 28 pp.

[3] K. M. Gerke, R. V. Vasilyev, S. Khirevich, D. Collins, M. V. Karsanina, T. O. Sizonenko, D. V. Korost, S. Lamontagne, D. Mallants, “Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies”, Computers Geosciences, 2018, 41–58 | DOI

[4] O. Dinariev, N. Evseev, D. Klemin, “Density Functional Hydrodynamics in Multiscale Pore Systems: Chemical Potential Drive”, E3S Web of Conferences, 146 (2020) | DOI

[5] T. Ramstad, N. Idowu, C. Nardi, P. E. Oren, “Relative Permeability Calculations from Two-Phase Flow Simulations Directly on Digital Images of Porous Rocks”, Transport in Porous Media, 94 (2012), 487–504 | DOI | MR

[6] T. Akai, M. J. Blunt, B. Bijeljic, “Pore-scale numerical simulation of low salinity water flooding using the lattice Boltzmann method”, Journal of Colloid and Interface Science, 566 (2020), 444–453 | DOI

[7] M. J. Blunt, Multiphase Flow in Permeable Media: A Pore-Scale Perspective, Cambridge University Press, 2017

[8] K. M. Gerke, R. V. Vasilyev, D. V. Korost, M. V. Karsanina, N. S. Balushkina, R. Khamidullin, G. A. Kalmikov, “Determining Physical Properties of Unconventional Reservoir Rocks: from Laboratory Methods to Pore-Scale Modeling”, SPE Unconventional Resources Conference and Exhibition-Asia Pacific, 2013, SPE167058

[9] P. V. Markov, “Novaia tekhnologiia resheniia obratnykh zadach postroeniia tsifrovykh modelei kerna s primeneniem stokhasticheskogo modelirovaniia i optimizatsii roia chastits”, SPE Russian Petroleum Technology Conference, 2020, SPE-201944-RU, 1–18

[10] M. A. Zagorovskiy, S. V. Stepanov, Ya. I. Gilmanov, A. A. Zagorovskiy, A. I. Zaitsev, “Osobennosti fizicheskogo i matematicheskogo modelirovaniia filtratsii nefti i vody pri raznykh davleniiakh obzhima”, Vestnik Tiumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft, gaz, energetika, 7:4 (2021), 93–110

[11] A. E. Altunin, S. V. Sokolov, S. V. Stepanov, N. A. Cheremisin, A. B. Shabarov, “Raschetnii metod polucheniia OFP na osnove resheniia obobshchennykh uravnenii Bernulli dlia sistemy porovykh kanalov”, Neftepromyslovoe delo, 2013, no. 8, 40–46

[12] O. A. Kuzina, A B. Shabarov, “Raschetno-eksperimentalnyi metod opredeleniia parametrov filtratsii smesi «neft–vodnii rastvor poverkhnostno aktivnykh veshestv»”, Vestnik Tiumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft, gaz, energetika, 6:1 (2020), 41–64

[13] A. B. Shabarov, A. V. Shatalov, “Poteri davleniia pri techenii vodoneftianoi smesi v porovykh kanalakh”, Vestnik Tiumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft, gaz, energetika, 2:2 (2016), 50–72

[14] A. T. Akhmetov, V. V. Mavletov, V. V. Glukhov, “Problemy modelirovaniia techeniia invertnykh vodoneftianykh dispersii v kapilliarakh”, Materialy XVII sessii Mezhdunarodnoi shkoly po modeliam mekhaniki sploshnoy sredy, Trudy Matematicheskogo tsentra imeni N.I. Lobachevskogo, 27, Izdatelstvo Kazanskogo matematicheskogo obshchestva, Kazan, 2004, 30–41

[15] A. T. Akhmetov, S. P. Sametov, “Osobennosti techeniia dispersii iz mikrokapel vody v microkapilliarakh”, Pisma v Zhurnal Tekhnicheskoi Fiziki, 36:22 (2010), 21–28

[16] A. A. Velizhanin, O. A. Simonov, “Experimentalnoe issledovanie dvukhfaznogo techeniia zhidkostei v tsilindricheskom kapilliare”, Vestnik Tiumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft, gaz, energetika, 3:4 (2017), 82–98

[17] K. Arora, R. Sureshkumar, B. Khomami, “Experimental investigation of purely elastic instabilities in periodic flows”, Journal of Non-Newtonian Fluid Mechanics, 108:1-3 (2002), 209–226 | DOI

[18] S. Roman, C. Soulaine, A. R. Kovscek, “Pore-scale visualization and characterization of viscous dissipation in porous media”, J. of Colloid and Interface Sci., 558 (2019), 269–279 | DOI

[19] S. V. Stepanov, A. B. Shabarov, “K voprosu o nalichii zakonomernostei mezhdu funktsiei mezhfaznogo vzaimodeistviia i filtratsionno-emkostnymi svoistvami”, Vestnik Tiumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft, gaz, energetika, 7:1 (2021), 92–111

[20] G. I. Barenblatt, V. M. Entov, V. M. Ryzhik, Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984, 211 pp.

[21] M. Ashrafi, Y. Souraki, O. Torsaeter, “Investigating the Temperature Dependency of Oil and Water Relative Permeabilities for Heavy Oil Systems”, Transport in Porous Media, 2014, 534

[22] J. Wang, M. Dong, K. Asghari, “Effect of Oil Viscosity on Heavy-Oil/Water Relative Permeability Curves”, SPE Symposium on Improvsed Oil Recovery, 2006

[23] Y. Qin, Y. Wu, P. Liu, F. Zhao, Z. Yuan, Experimental studies on effects of temperature on oil and water relative permeability in heavy-oil reservoirs, Scientific reports, 2018

[24] A. A. Vakulin, Teplofizika i teoreticheskaia teplotekhnika, Izdatelstvo Tiumenskogo gosudarstvennogo universiteta, Tyumen, 2019, 196 pp.

[25] V. P. Isachenko, V. A. Osipova, A. S. Sukomel, Teploperedacha, Energia, M., 1969, 440 pp.

[26] A. V. Dzhemesyuk, N. N. Mikhailov, “Hydrodynamic models of the residual oil distribution in water-flood reservoirs”, Fluid Dynamics, 35:3 (2000), 393–398 | DOI | Zbl

[27] V. G. Ogandzhaniants, L. V. Belova, A. B. Baishev, “Vliianie sootnosheniia fiziko-khimicheskikh i gidrodinamicheskikh sil na fazovye pronitsaemosti polimiktovykh porod”, Sb. nauch. tr. Vses. Neftegaz. NII, 1985, no. 93, 72–79

[28] D. M. Orlov, A. P. Fedoseev, N. V. Savchenko, I. IU. Korchazhkina, B. A. Grigoriev, A. E. Ryzhkov, T. A. Perunova, N. IU. Maksimova, E. P. Kalashnikova, “Ispolzovanie metoda nestatsionarnoi filtratsii dlia otsenki vliianiia skorosti filtratsii na otnositelnye fazovye pronitsaemosti”, Vesti gazovoi nauki, 2015, no. 3, 8–14

[29] R. A. Fulcher, T. Ertekin, C. D. Stahl, “Effect of capillary number and its constituents on two-phase relative permeability curves”, J. of Petroleum Technol, 1985, no. 37, 249–260 | DOI