Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_1_a6, author = {M. A. Zagorovskiy and A. B. Shabarov and S. V. Stepanov}, title = {Cluster capillary core model for calculation of relative phase permeability for oil and water filtration}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {85--104}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_1_a6/} }
TY - JOUR AU - M. A. Zagorovskiy AU - A. B. Shabarov AU - S. V. Stepanov TI - Cluster capillary core model for calculation of relative phase permeability for oil and water filtration JO - Matematičeskoe modelirovanie PY - 2024 SP - 85 EP - 104 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2024_36_1_a6/ LA - ru ID - MM_2024_36_1_a6 ER -
%0 Journal Article %A M. A. Zagorovskiy %A A. B. Shabarov %A S. V. Stepanov %T Cluster capillary core model for calculation of relative phase permeability for oil and water filtration %J Matematičeskoe modelirovanie %D 2024 %P 85-104 %V 36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2024_36_1_a6/ %G ru %F MM_2024_36_1_a6
M. A. Zagorovskiy; A. B. Shabarov; S. V. Stepanov. Cluster capillary core model for calculation of relative phase permeability for oil and water filtration. Matematičeskoe modelirovanie, Tome 36 (2024) no. 1, pp. 85-104. http://geodesic.mathdoc.fr/item/MM_2024_36_1_a6/
[1] M. Honarpour, L. Koederitz, A. H. Harvey, Relative Permeability of Petroleum Reservoirs, CRC Press Inc, 1986, 143 pp.
[2] V. A. Balashov, A. A. Zlotnik, E. B. Savenkov, “Chislenyi algoritm dlia rascheta trekhmernykh dvukhfaznykh techenii s poverkhnostnymi effektami v oblastiakh s vokselnoy geometriei”, Preprinty IPM im. M.V. Keldysha, 2017, 091, 28 pp.
[3] K. M. Gerke, R. V. Vasilyev, S. Khirevich, D. Collins, M. V. Karsanina, T. O. Sizonenko, D. V. Korost, S. Lamontagne, D. Mallants, “Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies”, Computers Geosciences, 2018, 41–58 | DOI
[4] O. Dinariev, N. Evseev, D. Klemin, “Density Functional Hydrodynamics in Multiscale Pore Systems: Chemical Potential Drive”, E3S Web of Conferences, 146 (2020) | DOI
[5] T. Ramstad, N. Idowu, C. Nardi, P. E. Oren, “Relative Permeability Calculations from Two-Phase Flow Simulations Directly on Digital Images of Porous Rocks”, Transport in Porous Media, 94 (2012), 487–504 | DOI | MR
[6] T. Akai, M. J. Blunt, B. Bijeljic, “Pore-scale numerical simulation of low salinity water flooding using the lattice Boltzmann method”, Journal of Colloid and Interface Science, 566 (2020), 444–453 | DOI
[7] M. J. Blunt, Multiphase Flow in Permeable Media: A Pore-Scale Perspective, Cambridge University Press, 2017
[8] K. M. Gerke, R. V. Vasilyev, D. V. Korost, M. V. Karsanina, N. S. Balushkina, R. Khamidullin, G. A. Kalmikov, “Determining Physical Properties of Unconventional Reservoir Rocks: from Laboratory Methods to Pore-Scale Modeling”, SPE Unconventional Resources Conference and Exhibition-Asia Pacific, 2013, SPE167058
[9] P. V. Markov, “Novaia tekhnologiia resheniia obratnykh zadach postroeniia tsifrovykh modelei kerna s primeneniem stokhasticheskogo modelirovaniia i optimizatsii roia chastits”, SPE Russian Petroleum Technology Conference, 2020, SPE-201944-RU, 1–18
[10] M. A. Zagorovskiy, S. V. Stepanov, Ya. I. Gilmanov, A. A. Zagorovskiy, A. I. Zaitsev, “Osobennosti fizicheskogo i matematicheskogo modelirovaniia filtratsii nefti i vody pri raznykh davleniiakh obzhima”, Vestnik Tiumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft, gaz, energetika, 7:4 (2021), 93–110
[11] A. E. Altunin, S. V. Sokolov, S. V. Stepanov, N. A. Cheremisin, A. B. Shabarov, “Raschetnii metod polucheniia OFP na osnove resheniia obobshchennykh uravnenii Bernulli dlia sistemy porovykh kanalov”, Neftepromyslovoe delo, 2013, no. 8, 40–46
[12] O. A. Kuzina, A B. Shabarov, “Raschetno-eksperimentalnyi metod opredeleniia parametrov filtratsii smesi «neft–vodnii rastvor poverkhnostno aktivnykh veshestv»”, Vestnik Tiumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft, gaz, energetika, 6:1 (2020), 41–64
[13] A. B. Shabarov, A. V. Shatalov, “Poteri davleniia pri techenii vodoneftianoi smesi v porovykh kanalakh”, Vestnik Tiumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft, gaz, energetika, 2:2 (2016), 50–72
[14] A. T. Akhmetov, V. V. Mavletov, V. V. Glukhov, “Problemy modelirovaniia techeniia invertnykh vodoneftianykh dispersii v kapilliarakh”, Materialy XVII sessii Mezhdunarodnoi shkoly po modeliam mekhaniki sploshnoy sredy, Trudy Matematicheskogo tsentra imeni N.I. Lobachevskogo, 27, Izdatelstvo Kazanskogo matematicheskogo obshchestva, Kazan, 2004, 30–41
[15] A. T. Akhmetov, S. P. Sametov, “Osobennosti techeniia dispersii iz mikrokapel vody v microkapilliarakh”, Pisma v Zhurnal Tekhnicheskoi Fiziki, 36:22 (2010), 21–28
[16] A. A. Velizhanin, O. A. Simonov, “Experimentalnoe issledovanie dvukhfaznogo techeniia zhidkostei v tsilindricheskom kapilliare”, Vestnik Tiumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft, gaz, energetika, 3:4 (2017), 82–98
[17] K. Arora, R. Sureshkumar, B. Khomami, “Experimental investigation of purely elastic instabilities in periodic flows”, Journal of Non-Newtonian Fluid Mechanics, 108:1-3 (2002), 209–226 | DOI
[18] S. Roman, C. Soulaine, A. R. Kovscek, “Pore-scale visualization and characterization of viscous dissipation in porous media”, J. of Colloid and Interface Sci., 558 (2019), 269–279 | DOI
[19] S. V. Stepanov, A. B. Shabarov, “K voprosu o nalichii zakonomernostei mezhdu funktsiei mezhfaznogo vzaimodeistviia i filtratsionno-emkostnymi svoistvami”, Vestnik Tiumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft, gaz, energetika, 7:1 (2021), 92–111
[20] G. I. Barenblatt, V. M. Entov, V. M. Ryzhik, Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984, 211 pp.
[21] M. Ashrafi, Y. Souraki, O. Torsaeter, “Investigating the Temperature Dependency of Oil and Water Relative Permeabilities for Heavy Oil Systems”, Transport in Porous Media, 2014, 534
[22] J. Wang, M. Dong, K. Asghari, “Effect of Oil Viscosity on Heavy-Oil/Water Relative Permeability Curves”, SPE Symposium on Improvsed Oil Recovery, 2006
[23] Y. Qin, Y. Wu, P. Liu, F. Zhao, Z. Yuan, Experimental studies on effects of temperature on oil and water relative permeability in heavy-oil reservoirs, Scientific reports, 2018
[24] A. A. Vakulin, Teplofizika i teoreticheskaia teplotekhnika, Izdatelstvo Tiumenskogo gosudarstvennogo universiteta, Tyumen, 2019, 196 pp.
[25] V. P. Isachenko, V. A. Osipova, A. S. Sukomel, Teploperedacha, Energia, M., 1969, 440 pp.
[26] A. V. Dzhemesyuk, N. N. Mikhailov, “Hydrodynamic models of the residual oil distribution in water-flood reservoirs”, Fluid Dynamics, 35:3 (2000), 393–398 | DOI | Zbl
[27] V. G. Ogandzhaniants, L. V. Belova, A. B. Baishev, “Vliianie sootnosheniia fiziko-khimicheskikh i gidrodinamicheskikh sil na fazovye pronitsaemosti polimiktovykh porod”, Sb. nauch. tr. Vses. Neftegaz. NII, 1985, no. 93, 72–79
[28] D. M. Orlov, A. P. Fedoseev, N. V. Savchenko, I. IU. Korchazhkina, B. A. Grigoriev, A. E. Ryzhkov, T. A. Perunova, N. IU. Maksimova, E. P. Kalashnikova, “Ispolzovanie metoda nestatsionarnoi filtratsii dlia otsenki vliianiia skorosti filtratsii na otnositelnye fazovye pronitsaemosti”, Vesti gazovoi nauki, 2015, no. 3, 8–14
[29] R. A. Fulcher, T. Ertekin, C. D. Stahl, “Effect of capillary number and its constituents on two-phase relative permeability curves”, J. of Petroleum Technol, 1985, no. 37, 249–260 | DOI