Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_1_a2, author = {O. V. Nikolaeva}, title = {Multispectral images segmentation algorithm}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {25--40}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_1_a2/} }
O. V. Nikolaeva. Multispectral images segmentation algorithm. Matematičeskoe modelirovanie, Tome 36 (2024) no. 1, pp. 25-40. http://geodesic.mathdoc.fr/item/MM_2024_36_1_a2/
[1] J. Ke, Y. Guo, A. Sowmya, “A fast approximate unmixing algorithm based on segmentation”, Proc. of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshop, 2017, 66–72 | DOI | Zbl
[2] A. M. Belov, A. Iu. Denisova, “Algoritm vyiavleniia sluchainykh iskazhenii v sostave stseny na serii raznovremennykh izobrazhenii DZZ odnoi i toi zhe territorii”, Kompiuternaia optika, 43:5 (2019), 869–885 | DOI
[3] A. A. Varlamova, A. Iu. Denisova, V. V. Sergeev, “Informatsionnaia tekhnologiia obrabotki dannykh DZZ dlia otsenki arealov rastenii”, Komp. optika, 42:5 (2018), 864–876 | DOI
[4] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Susstrunk, “SLIC superpixels compared to state-of-the-art superpixel methods”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 346:11 (2012), 2274–2282 | DOI
[5] V. A. Gorbachev, I. A. Krivorotov, A. O. Markelov, E. V. Kotliarova, “Semanticheskaia segmentatsiia sputnikovykh snimkov aeroportov s pomoshchiu svertochnykh neironnykh setei”, Kompiuternaia optika, 44:4 (2020), 636–645 | DOI
[6] E. S. Ivanov, I. P. Tishchenko, A. N. Vinogradov, “Segmentatsiia multispektralnykh snimkov s primeneniem svertochnykh neironnykh setei”, Sovremennye problemy DZZ iz kosmosa, 16:1 (2019), 25–34 | DOI
[7] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, “Automatic subspace clustering of high dimensional data for data mining applications”, Proc. ACM SIGMOD International Conference on Management Data, ACM Press, USA, 1998, 94–105 | DOI
[8] H. Nagesh, S. Goi, A. Choudhary, “Adaptive grids for clustering massive data sets”, Proc. of 1st SIAM International Conference on Data Mining, Chicago, USA, 2001, 1–17
[9] N. P. Lin, C. I. Chang, N. Y. Jan, H. J. Chen, W. H. Hao, “A deflected grid-based algorithm for clustering analysis”, Int. J. Math. Models Methods Appl. Sci., 1:1 (2007), 33–39
[10] I. A. Pestunov, S. A. Rylov, V. B. Berikov, “Ierarkhicheskie algoritmy klasterizatsii dlia segmentatsii multispektralnykh izobrazhenii”, Avtometriia, 51:4 (2015), 12–21
[11] A. Vedaldi, S. Soatto, “Quick shift and kernels methods for mode seeking”, Proc. of Conference Computer Vision, ECCV 2008, 705–718 | DOI
[12] A. Ibrahim, M. Salem, H.A Ali, “Automatic quick-shift segmentation for color images”, JCSI International Journal of Computer Science Iss., 11:3 (2014), 122–127
[13] I. A. Pestunov, V. B. Berikov, Iu. N. Siniavskii, “Segmentatsiia mnogospektralnykh izobrazhenii na osnove ansamblia neparametricheskikh algoritmov klasterizatsii”, Vestnik Sib. gos. aerokosmich. universiteta im. akad. M.F.Reshetneva, 2010, no. 5, 56–64
[14] S. V. Belim, P. E. Kutlunin, “Vydelenie konturov na izobrazheniiakh s pomoshchiu algoritma klasterizatsii”, Kompiuternaia optika, 39:1 (2015), 119–125 | DOI
[15] Y. Tarabalka, J. Chanussot, J. A. Benediktsson, “Segmentation and classification of hyperspectral images using watershed transformation”, Pattern Recognition, 43 (2010), 2367–2379 | DOI | Zbl
[16] O. V. Nikolaeva, “Statistical technique in clustering problems”, Math. Models Computer Simulations, 15:3 (2023), 445–453 | DOI | DOI
[17] E. V. Myasnikov, “Hyperspectral image segmentation using dimensionality reduction and classical segmentation approaches”, Computer Optics, 41:4 (2017), 564–572 | DOI
[18] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, S. Vassilvitskii, “Scalable K-means++”, Proc. of the VLDB Endowment, 5:7 (2012), 622–633 | DOI | MR