On the influence of the dynamic diffusion coefficient with Feibelman parameter on the quantum nonlocal effect of hybrid plasmon nanoparticles
Matematičeskoe modelirovanie, Tome 36 (2024) no. 1, pp. 11-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem of polarized light scattering by a hybrid nanoparticle consisting of a dielectric core and plasmonic gold shell. A quantum effect of nonlocality arises in the shell, which is considered in the framework of the semiclassical generalized nonlocal optical response theory (GNOR). Based on the Discrete Sources Method, a mathematical model of the GNOR theory with a dynamic diffusion coefficient is formulated and implemented. The dynamic diffusion coefficient is determined using the Feibelman quantum surface parameter. In calculations, the values of the Feibelman parameter are taken from the experimental data available. A comparative analysis of the results of the GNOR theory with constant and dynamic diffusion coefficients was performed. It has been established that the results obtained for the dynamic diffusion coefficient and for the traditional semiclassical model with a constant coefficient can differ significantly, especially when studying the behavior of fields near the surface of a hybrid particle in the frequency domain.
Keywords: light scattering, Discrete Sources Method, Feibelman parameter.
Mots-clés : hybrid nanoparticle, nonlocal effect, diffusion coefficient
@article{MM_2024_36_1_a1,
     author = {Yu. A. Eremin and V. V. Lopushenko},
     title = {On the influence of the dynamic diffusion coefficient with {Feibelman} parameter on the quantum nonlocal effect of hybrid plasmon nanoparticles},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {11--24},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_1_a1/}
}
TY  - JOUR
AU  - Yu. A. Eremin
AU  - V. V. Lopushenko
TI  - On the influence of the dynamic diffusion coefficient with Feibelman parameter on the quantum nonlocal effect of hybrid plasmon nanoparticles
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 11
EP  - 24
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_1_a1/
LA  - ru
ID  - MM_2024_36_1_a1
ER  - 
%0 Journal Article
%A Yu. A. Eremin
%A V. V. Lopushenko
%T On the influence of the dynamic diffusion coefficient with Feibelman parameter on the quantum nonlocal effect of hybrid plasmon nanoparticles
%J Matematičeskoe modelirovanie
%D 2024
%P 11-24
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_1_a1/
%G ru
%F MM_2024_36_1_a1
Yu. A. Eremin; V. V. Lopushenko. On the influence of the dynamic diffusion coefficient with Feibelman parameter on the quantum nonlocal effect of hybrid plasmon nanoparticles. Matematičeskoe modelirovanie, Tome 36 (2024) no. 1, pp. 11-24. http://geodesic.mathdoc.fr/item/MM_2024_36_1_a1/

[1] J. W.M. Chon, K. Iniewski, Nanoplasmonics. Advanced Device Applications, CRC Press, 2018, 288 pp.

[2] W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics”, Nature, 424 (2003), 824–830 | DOI

[3] H. Shi, X. Zhu, S. Zhang et al, “Plasmonic metal nanostructures with extremely small features: new effects, fabrication and applications”, Nanoscale Adv., 3 (2021), 4349–4369 | DOI

[4] C. David, F. J. Garcia de Abajo, “Spatial Nonlocality in the Optical Response of Metal Nanoparticles”, J. Phys. Chem., 115:40 (2011), 19470–19475

[5] W. Zhu, R. Esteban, A. G. Borisov et al, “Quantum mechanical effects in plasmonic structures with subnanometre gaps”, Nat. Commun., 7 (2016), 11495 | DOI

[6] G. Toscano, J. Straube, A. Kwiatkowski et al., “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics”, Nat. Commun., 6 (2015), 7132 | DOI

[7] S. Raza, S. I. Bozhevolnyi, M. Wubs, N. A. Mortensen, “Nonlocal optical response in metallic nanostructures”, J. Phys. Condens Matter., 27 (2015), 183204 | DOI

[8] C. A. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications, OUP, Oxford, 2011, 544 pp.

[9] R. Sinha-Roy, P. Garcia-González, H. C. Weissker et al., “Classical and ab initio plasmonics meet at sub-nanometric noble metal rods”, ACS Photonics, 4 (2017), 1484 | DOI

[10] N. A. Mortensen, S. Raza, M. Wubs et al., “A generalized non-local optical response theory for plasmonic nanostructures”, Nat. Commun., 5 (2014), 3809 | DOI

[11] M. Kupresak, X. Zheng, V. Gae, V. V. Moshchalkov, “Appropriate nonlocal hydrodynamic models for the characterization of deep-nanometer scale plasmonic scatterers”, Adv. Theory Simul., 3 (2019), 1900172 | DOI

[12] P. J. Feibelman, “Surface electromagnetic fields”, Prog. Surf. Sci., 12 (1982), 287–407 | DOI

[13] Y. Yang, D. Zhu, W. Yan et al, “A general theoretical and experimental framework for nanoscale electromagnetism”, Nature, 576 (2019), 248–252 | DOI

[14] P. E. Stamatopoulou, C. Tserkezis, “Finite-size and quantum effects in plasmonics: manifestations and theoretical modelling [Invited]”, Optical Materials Express, 12:5 (2022), 1869–1893 | DOI

[15] M. K. Svendsen, C. Wolff, A. P. Jauho et al, “Role of diffusive surface scattering in nonlocal plasmonics”, J. Phys. Condens. Matter., 32 (2020), 395702 | DOI

[16] Yu. A. Eremin, A. G. Sveshnikov, “Model of Plasmon Nanolaser Resonator Taking the Non-Local Effect into Account”, Mathematical Models and Computer Simulations, 13:3 (2021), 466–473 | DOI | DOI | MR | Zbl

[17] Yu. A. Eremin, A. G. Sveshnikov, “Semi-Classical Models of Quantum Nanoplasmonics Based on the Discrete Source Method (Review)”, Computational Mathematics and Mathematical Physics, 61:4 (2021), 564–590 | DOI | MR | Zbl

[18] F. Yang, K. Ding, “Transformation optics approach to mesoscopic plasmonics”, Phys. Rev. B, 105 (2022), L121410 | DOI

[19] N. A. Mortensen, P. A.D. Goncalves, F. A. Shuklin et al., “Surface-response functions obtained from equilibrium electron-density profiles”, Nanophotonics, 10:14 (2021), 3647–3657 | DOI

[20] N. A. Mortensen, “Mesoscopic electrodynamics at metal surfaces (Review)”, Nanophotonics, 10:10 (2021), 2563–2616 | DOI

[21] D. Colton, R. Kress, Integral Equation Methods in Scattering Theory, John Wiley, New York, 1983 | MR | MR | Zbl

[22] J.A. Stratton, Electromagnetic Theory, McGraw-Hill book Company, New York–London, 1941, 615 pp.

[23] P. A.D. Goncalves, T. Christensen, N. Rivera et al., “Plasmon-emitter interactions at the nanoscale”, Nat. Commun., 11 (2020), 366 | DOI

[24] J. Zhua, S. Zhao, “Plasmonic refractive index sensitivity of ellipsoidal Al nanoshell: Tuning the wavelength position and width of spectral dip”, Sensors and Actuators B, 232 (2016), 469–476 | DOI

[25] Z. Izadiyan, K. Shameli, M. Miyake et al., “Green fabrication of biologically active magnetic core-shell Fe3O4/Au nanoparticles and their potential anticancer effect”, Sci. Eng., 96 (2019), 51–57

[26] P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals”, Phys. Rev. B, 6 (1972), 4370–4379 | DOI

[27] R. A. Echarri, P. A.D. Goncalves, C. Tserkezis et al., “Optical response of noble metal nanostructures: Quantum surface effects in crystallographic facets”, Optica, 8:5 (2021), 710–721 | DOI

[28] S. Rajkumar, M. Prabaharan, “Multi-functional core-shell Fe3O4@Au nanoparticles for cancer diagnosis and therapy”, Colloids Surf. B. Biointerfaces, 174 (2019), 252–259 | DOI