Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_1_a1, author = {Yu. A. Eremin and V. V. Lopushenko}, title = {On the influence of the dynamic diffusion coefficient with {Feibelman} parameter on the quantum nonlocal effect of hybrid plasmon nanoparticles}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {11--24}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_1_a1/} }
TY - JOUR AU - Yu. A. Eremin AU - V. V. Lopushenko TI - On the influence of the dynamic diffusion coefficient with Feibelman parameter on the quantum nonlocal effect of hybrid plasmon nanoparticles JO - Matematičeskoe modelirovanie PY - 2024 SP - 11 EP - 24 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2024_36_1_a1/ LA - ru ID - MM_2024_36_1_a1 ER -
%0 Journal Article %A Yu. A. Eremin %A V. V. Lopushenko %T On the influence of the dynamic diffusion coefficient with Feibelman parameter on the quantum nonlocal effect of hybrid plasmon nanoparticles %J Matematičeskoe modelirovanie %D 2024 %P 11-24 %V 36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2024_36_1_a1/ %G ru %F MM_2024_36_1_a1
Yu. A. Eremin; V. V. Lopushenko. On the influence of the dynamic diffusion coefficient with Feibelman parameter on the quantum nonlocal effect of hybrid plasmon nanoparticles. Matematičeskoe modelirovanie, Tome 36 (2024) no. 1, pp. 11-24. http://geodesic.mathdoc.fr/item/MM_2024_36_1_a1/
[1] J. W.M. Chon, K. Iniewski, Nanoplasmonics. Advanced Device Applications, CRC Press, 2018, 288 pp.
[2] W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics”, Nature, 424 (2003), 824–830 | DOI
[3] H. Shi, X. Zhu, S. Zhang et al, “Plasmonic metal nanostructures with extremely small features: new effects, fabrication and applications”, Nanoscale Adv., 3 (2021), 4349–4369 | DOI
[4] C. David, F. J. Garcia de Abajo, “Spatial Nonlocality in the Optical Response of Metal Nanoparticles”, J. Phys. Chem., 115:40 (2011), 19470–19475
[5] W. Zhu, R. Esteban, A. G. Borisov et al, “Quantum mechanical effects in plasmonic structures with subnanometre gaps”, Nat. Commun., 7 (2016), 11495 | DOI
[6] G. Toscano, J. Straube, A. Kwiatkowski et al., “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics”, Nat. Commun., 6 (2015), 7132 | DOI
[7] S. Raza, S. I. Bozhevolnyi, M. Wubs, N. A. Mortensen, “Nonlocal optical response in metallic nanostructures”, J. Phys. Condens Matter., 27 (2015), 183204 | DOI
[8] C. A. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications, OUP, Oxford, 2011, 544 pp.
[9] R. Sinha-Roy, P. Garcia-González, H. C. Weissker et al., “Classical and ab initio plasmonics meet at sub-nanometric noble metal rods”, ACS Photonics, 4 (2017), 1484 | DOI
[10] N. A. Mortensen, S. Raza, M. Wubs et al., “A generalized non-local optical response theory for plasmonic nanostructures”, Nat. Commun., 5 (2014), 3809 | DOI
[11] M. Kupresak, X. Zheng, V. Gae, V. V. Moshchalkov, “Appropriate nonlocal hydrodynamic models for the characterization of deep-nanometer scale plasmonic scatterers”, Adv. Theory Simul., 3 (2019), 1900172 | DOI
[12] P. J. Feibelman, “Surface electromagnetic fields”, Prog. Surf. Sci., 12 (1982), 287–407 | DOI
[13] Y. Yang, D. Zhu, W. Yan et al, “A general theoretical and experimental framework for nanoscale electromagnetism”, Nature, 576 (2019), 248–252 | DOI
[14] P. E. Stamatopoulou, C. Tserkezis, “Finite-size and quantum effects in plasmonics: manifestations and theoretical modelling [Invited]”, Optical Materials Express, 12:5 (2022), 1869–1893 | DOI
[15] M. K. Svendsen, C. Wolff, A. P. Jauho et al, “Role of diffusive surface scattering in nonlocal plasmonics”, J. Phys. Condens. Matter., 32 (2020), 395702 | DOI
[16] Yu. A. Eremin, A. G. Sveshnikov, “Model of Plasmon Nanolaser Resonator Taking the Non-Local Effect into Account”, Mathematical Models and Computer Simulations, 13:3 (2021), 466–473 | DOI | DOI | MR | Zbl
[17] Yu. A. Eremin, A. G. Sveshnikov, “Semi-Classical Models of Quantum Nanoplasmonics Based on the Discrete Source Method (Review)”, Computational Mathematics and Mathematical Physics, 61:4 (2021), 564–590 | DOI | MR | Zbl
[18] F. Yang, K. Ding, “Transformation optics approach to mesoscopic plasmonics”, Phys. Rev. B, 105 (2022), L121410 | DOI
[19] N. A. Mortensen, P. A.D. Goncalves, F. A. Shuklin et al., “Surface-response functions obtained from equilibrium electron-density profiles”, Nanophotonics, 10:14 (2021), 3647–3657 | DOI
[20] N. A. Mortensen, “Mesoscopic electrodynamics at metal surfaces (Review)”, Nanophotonics, 10:10 (2021), 2563–2616 | DOI
[21] D. Colton, R. Kress, Integral Equation Methods in Scattering Theory, John Wiley, New York, 1983 | MR | MR | Zbl
[22] J.A. Stratton, Electromagnetic Theory, McGraw-Hill book Company, New York–London, 1941, 615 pp.
[23] P. A.D. Goncalves, T. Christensen, N. Rivera et al., “Plasmon-emitter interactions at the nanoscale”, Nat. Commun., 11 (2020), 366 | DOI
[24] J. Zhua, S. Zhao, “Plasmonic refractive index sensitivity of ellipsoidal Al nanoshell: Tuning the wavelength position and width of spectral dip”, Sensors and Actuators B, 232 (2016), 469–476 | DOI
[25] Z. Izadiyan, K. Shameli, M. Miyake et al., “Green fabrication of biologically active magnetic core-shell Fe3O4/Au nanoparticles and their potential anticancer effect”, Sci. Eng., 96 (2019), 51–57
[26] P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals”, Phys. Rev. B, 6 (1972), 4370–4379 | DOI
[27] R. A. Echarri, P. A.D. Goncalves, C. Tserkezis et al., “Optical response of noble metal nanostructures: Quantum surface effects in crystallographic facets”, Optica, 8:5 (2021), 710–721 | DOI
[28] S. Rajkumar, M. Prabaharan, “Multi-functional core-shell Fe3O4@Au nanoparticles for cancer diagnosis and therapy”, Colloids Surf. B. Biointerfaces, 174 (2019), 252–259 | DOI