Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_9_a2, author = {S. M. Bosnyakov and A. V. Wolkov and S. V. Mikhaylov and V. Yu. Podaruev}, title = {A high-order accuracy method for calculating the initial icing stage of civil aircraft structural elements}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {22--44}, publisher = {mathdoc}, volume = {35}, number = {9}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_9_a2/} }
TY - JOUR AU - S. M. Bosnyakov AU - A. V. Wolkov AU - S. V. Mikhaylov AU - V. Yu. Podaruev TI - A high-order accuracy method for calculating the initial icing stage of civil aircraft structural elements JO - Matematičeskoe modelirovanie PY - 2023 SP - 22 EP - 44 VL - 35 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_9_a2/ LA - ru ID - MM_2023_35_9_a2 ER -
%0 Journal Article %A S. M. Bosnyakov %A A. V. Wolkov %A S. V. Mikhaylov %A V. Yu. Podaruev %T A high-order accuracy method for calculating the initial icing stage of civil aircraft structural elements %J Matematičeskoe modelirovanie %D 2023 %P 22-44 %V 35 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_9_a2/ %G ru %F MM_2023_35_9_a2
S. M. Bosnyakov; A. V. Wolkov; S. V. Mikhaylov; V. Yu. Podaruev. A high-order accuracy method for calculating the initial icing stage of civil aircraft structural elements. Matematičeskoe modelirovanie, Tome 35 (2023) no. 9, pp. 22-44. http://geodesic.mathdoc.fr/item/MM_2023_35_9_a2/
[1] R. Gary, B. Berkowitz, Users Manual for the NASA Lewis Ice Accretion Prediction Code (LEWICE), NASA Contractor Report No 185129, 1990
[2] D. Guffond, J. Cassaing, S. Brunet, “Overview of icing research at ONERA”, AIAA 23rd Aerospace Sciences Meting (Reno, NV, USA, 1985), 8
[3] S. Guilherme, S. Otavio, Z. Euryale, “Numerical Simulation of Airfoil Thermal Anti-Ice Operation. Part 1: Mathematical Modeling”, Journal of Aircraft, 44:2 (2007), 627–633 | DOI
[4] P. Ion, S. Farooq, “Ice Accretion Simulation Code CANICE”, International Aerospace Symposium (Bucharest, Romania, Oct. 2011), 7
[5] M. J. Hospers, H. W. Hoeijmakers, “Eulerian Method for Ice Accretion on Multiple-Element Airfoil Sections”, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (Florida, Jan 2010), 13
[6] Y. Bourgault, Z. Boutanios, W. G. Habashi, “Three-dimensional Eulerian Approach to Droplet Impingement Simulation Using FENSAP ICE, Part 1: Model, Algorithm, and Validation”, Journal of Aircraft, 37:1 (2000), 95–103 | DOI
[7] R. Honsek, Development of a Three-Dimensional Eulerian Model of Droplet Wall Interaction Mechanisms, Department of Mechanical Eng. McGill Univ., Montreal, 2005, 110
[8] A. Aksenov, P. M. Byvaltsev, S. V. Zhluktov, K. E. Sorokin, A. A. Babulin, V. I. Shevyakov, “Numerical simulation of ice accretion on airplane surface”, AIP Conf. Proc., 2125 (2019)
[9] ANSYS 18 Capabilities Brochure, ANSYS, Inc, 2017, 21 pp. http://www.ansys.com/media/ansys/corporate/files/pdf/product/release-highlights/ansyscapabilities182.pdf
[10] I. P. Mazin, Fizicheskie osnovy obledeneniia samoletov, M., 1957, 121 pp.
[11] A. L. Stasenko, V. A. Tolstykh, D. A. Shirobokov, “K modelirovaniiu oledeneniia samoleta: dinamika kapel i poverkhnost smachivaniia”, Matem. modelir., 13:6 (2001), 81–86 | Zbl
[12] S. V. Alekseenko, A. A. Prikhodko, “Chislennoe modelirovanie obledeneniia tsilindra i profilia. Obzor modelei i rezultaty raschetov”, Uch. zapiski TsAGI, XLIV (2013), 25–57
[13] F. Bassi, S. Rebay, “A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations”, Journal of Computational Physics, 131 (1997), 267–279 | DOI | MR
[14] K. A. Hoffmann, S. T. Chiang, Computational Fluid Dynamics, v. 1, 4th edition, Engineering Education System, Wichita, Kan, USA, 2000, 1167 pp.
[15] Y. Bourgault, W. G. Habashi, J. Dompierre, G. S. Baruzzi, “A Finite Element Method Study of Eulerian Droplets Impingement Models”, Inter. J. for Numer. Methods in Fluids, 29 (1999) | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[16] Y. Bourgault, H. Beaugendre, W. G. Habashi, “Development of a Shallow Water Icing Model in FENSAP-ICE”, Journal of Aircraft, 37 (2000)
[17] J. Boussinesq, L'Academie des sciences de L'Institut de France, 23:1 (1877), 46–50
[18] B. Aupoix, P. R. Spalart, “Extensions of the Spalart-Allmaras turbulence model to account for wall roughness”, International Journal of Heat and Fluid Flows, 24 (2003) | DOI
[19] A. V. Wolkov, “Application of the Multigrid Approach for Solving 3D Navier-Stokes Equations on Hexahedral Grids Using the Discontinuous Galerkin Method”, Computational Mathematics and Mathematical Physics, 50:3 (2010), 495–508 | DOI | MR | Zbl
[20] I. Bosnyakov, S. Bosnyakov, S. Mikhaylov, V. Podaruev, A. Troshin, A. Wolkov, “Validation of a Discontinuous Galerkin Based DES Solver in Flow Problems Using High Performance Computing”, 32nd Congress of the International Council of the Aeronautical Sciences (6-10 September 2021, Pudong Shargri-La, Sharghai, China)
[21] A. V. Gorobets, Parallelnye tekhnologii matematicheskogo modelirovaniia turbulentnykh techenii na sovremennykh superkompiuterakh, Diss. ...uch. step. d.f.-m.n., IPM im. M.V. Keldysha RAN, M., 2015, 226 pp.
[22] MPI: A Message-Passing Interface Standard. Version 3.1, Message Passing Interface Forum, 2015, 868 pp. (data obrascheniya: 10.09.2017) http://mpi-forum.org/docs
[23] ParMETIS Parallel Graph Partitioning and Fill-reducing Matrix Ordering, http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
[24] OpenMP Application Programming Interface. Version 4.5, OpenMP Architecture Rev. Board, , 2015, 368 pp. http://www.openmp.org
[25] Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms, http://eigen.tuxfamily.org
[26] Y. Bourgault, Z. Boutanios, W. G. Habashi, “Three-dimensional Eulerian Approach to Droplet Impingement Simulation Using FENSAP ICE, Part 1: Model, Algorithm, and Validation”, Journal of Aircraft, 37:1 (2000), 95–103 | DOI
[27] D. W. Levy, T. Zickuhr, J. Vassberg, S. Agrawal, R. A. Wahls, S. Pirzadeh, M. J. Hemsh, “Data summary from the First AIAA Computational Fluid Dynamics Drag Prediction Workshop”, J. Aircraft, 40:5 (2003), 875–882 | DOI