A high-order accuracy method for calculating the initial icing stage of civil aircraft structural elements
Matematičeskoe modelirovanie, Tome 35 (2023) no. 9, pp. 22-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

An effective approach based on the Discontinuous Galerkin Method (DG) of a high-order accuracy for calculating the initial stage of aircraft wing icing is presented. The problem is solved in the Euler approximation for small-sized water droplets that do not affect the main flow. Navier-Stokes equation system, Euler model equation system for the Liquid Water Content and some relations of the ice growth thermodynamics equations are written. Initial and boundary conditions are formulated. A supercomputer DG implementation is proposed to solve these equation systems. The efficiency of the parallel version for the code is investigated. Comments are given on the peculiarities of the calculation procedure organization. The accuracy of the calculation using DG schemes of different accuracy order is investigated. Test cases on the finely dispersed flow of supercooled droplets around the cylinder and the NACA0012 profile are presented. A comparison of numerical and experimental data is performed. The conclusion is made about the possibility of applying the developed methodology in practice.
Keywords: icing, Euler approach, high-order accuracy, Discontinuous Galerkin method, code efficiency, Liquid Water Content, collection efficiency, NACA0012 profile, comparison with experiment.
@article{MM_2023_35_9_a2,
     author = {S. M. Bosnyakov and A. V. Wolkov and S. V. Mikhaylov and V. Yu. Podaruev},
     title = {A high-order accuracy method for calculating the initial icing stage of civil aircraft structural elements},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {22--44},
     publisher = {mathdoc},
     volume = {35},
     number = {9},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_9_a2/}
}
TY  - JOUR
AU  - S. M. Bosnyakov
AU  - A. V. Wolkov
AU  - S. V. Mikhaylov
AU  - V. Yu. Podaruev
TI  - A high-order accuracy method for calculating the initial icing stage of civil aircraft structural elements
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 22
EP  - 44
VL  - 35
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_9_a2/
LA  - ru
ID  - MM_2023_35_9_a2
ER  - 
%0 Journal Article
%A S. M. Bosnyakov
%A A. V. Wolkov
%A S. V. Mikhaylov
%A V. Yu. Podaruev
%T A high-order accuracy method for calculating the initial icing stage of civil aircraft structural elements
%J Matematičeskoe modelirovanie
%D 2023
%P 22-44
%V 35
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_9_a2/
%G ru
%F MM_2023_35_9_a2
S. M. Bosnyakov; A. V. Wolkov; S. V. Mikhaylov; V. Yu. Podaruev. A high-order accuracy method for calculating the initial icing stage of civil aircraft structural elements. Matematičeskoe modelirovanie, Tome 35 (2023) no. 9, pp. 22-44. http://geodesic.mathdoc.fr/item/MM_2023_35_9_a2/

[1] R. Gary, B. Berkowitz, Users Manual for the NASA Lewis Ice Accretion Prediction Code (LEWICE), NASA Contractor Report No 185129, 1990

[2] D. Guffond, J. Cassaing, S. Brunet, “Overview of icing research at ONERA”, AIAA 23rd Aerospace Sciences Meting (Reno, NV, USA, 1985), 8

[3] S. Guilherme, S. Otavio, Z. Euryale, “Numerical Simulation of Airfoil Thermal Anti-Ice Operation. Part 1: Mathematical Modeling”, Journal of Aircraft, 44:2 (2007), 627–633 | DOI

[4] P. Ion, S. Farooq, “Ice Accretion Simulation Code CANICE”, International Aerospace Symposium (Bucharest, Romania, Oct. 2011), 7

[5] M. J. Hospers, H. W. Hoeijmakers, “Eulerian Method for Ice Accretion on Multiple-Element Airfoil Sections”, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (Florida, Jan 2010), 13

[6] Y. Bourgault, Z. Boutanios, W. G. Habashi, “Three-dimensional Eulerian Approach to Droplet Impingement Simulation Using FENSAP ICE, Part 1: Model, Algorithm, and Validation”, Journal of Aircraft, 37:1 (2000), 95–103 | DOI

[7] R. Honsek, Development of a Three-Dimensional Eulerian Model of Droplet Wall Interaction Mechanisms, Department of Mechanical Eng. McGill Univ., Montreal, 2005, 110

[8] A. Aksenov, P. M. Byvaltsev, S. V. Zhluktov, K. E. Sorokin, A. A. Babulin, V. I. Shevyakov, “Numerical simulation of ice accretion on airplane surface”, AIP Conf. Proc., 2125 (2019)

[9] ANSYS 18 Capabilities Brochure, ANSYS, Inc, 2017, 21 pp. http://www.ansys.com/media/ansys/corporate/files/pdf/product/release-highlights/ansyscapabilities182.pdf

[10] I. P. Mazin, Fizicheskie osnovy obledeneniia samoletov, M., 1957, 121 pp.

[11] A. L. Stasenko, V. A. Tolstykh, D. A. Shirobokov, “K modelirovaniiu oledeneniia samoleta: dinamika kapel i poverkhnost smachivaniia”, Matem. modelir., 13:6 (2001), 81–86 | Zbl

[12] S. V. Alekseenko, A. A. Prikhodko, “Chislennoe modelirovanie obledeneniia tsilindra i profilia. Obzor modelei i rezultaty raschetov”, Uch. zapiski TsAGI, XLIV (2013), 25–57

[13] F. Bassi, S. Rebay, “A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations”, Journal of Computational Physics, 131 (1997), 267–279 | DOI | MR

[14] K. A. Hoffmann, S. T. Chiang, Computational Fluid Dynamics, v. 1, 4th edition, Engineering Education System, Wichita, Kan, USA, 2000, 1167 pp.

[15] Y. Bourgault, W. G. Habashi, J. Dompierre, G. S. Baruzzi, “A Finite Element Method Study of Eulerian Droplets Impingement Models”, Inter. J. for Numer. Methods in Fluids, 29 (1999) | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[16] Y. Bourgault, H. Beaugendre, W. G. Habashi, “Development of a Shallow Water Icing Model in FENSAP-ICE”, Journal of Aircraft, 37 (2000)

[17] J. Boussinesq, L'Academie des sciences de L'Institut de France, 23:1 (1877), 46–50

[18] B. Aupoix, P. R. Spalart, “Extensions of the Spalart-Allmaras turbulence model to account for wall roughness”, International Journal of Heat and Fluid Flows, 24 (2003) | DOI

[19] A. V. Wolkov, “Application of the Multigrid Approach for Solving 3D Navier-Stokes Equations on Hexahedral Grids Using the Discontinuous Galerkin Method”, Computational Mathematics and Mathematical Physics, 50:3 (2010), 495–508 | DOI | MR | Zbl

[20] I. Bosnyakov, S. Bosnyakov, S. Mikhaylov, V. Podaruev, A. Troshin, A. Wolkov, “Validation of a Discontinuous Galerkin Based DES Solver in Flow Problems Using High Performance Computing”, 32nd Congress of the International Council of the Aeronautical Sciences (6-10 September 2021, Pudong Shargri-La, Sharghai, China)

[21] A. V. Gorobets, Parallelnye tekhnologii matematicheskogo modelirovaniia turbulentnykh techenii na sovremennykh superkompiuterakh, Diss. ...uch. step. d.f.-m.n., IPM im. M.V. Keldysha RAN, M., 2015, 226 pp.

[22] MPI: A Message-Passing Interface Standard. Version 3.1, Message Passing Interface Forum, 2015, 868 pp. (data obrascheniya: 10.09.2017) http://mpi-forum.org/docs

[23] ParMETIS Parallel Graph Partitioning and Fill-reducing Matrix Ordering, http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

[24] OpenMP Application Programming Interface. Version 4.5, OpenMP Architecture Rev. Board, , 2015, 368 pp. http://www.openmp.org

[25] Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms, http://eigen.tuxfamily.org

[26] Y. Bourgault, Z. Boutanios, W. G. Habashi, “Three-dimensional Eulerian Approach to Droplet Impingement Simulation Using FENSAP ICE, Part 1: Model, Algorithm, and Validation”, Journal of Aircraft, 37:1 (2000), 95–103 | DOI

[27] D. W. Levy, T. Zickuhr, J. Vassberg, S. Agrawal, R. A. Wahls, S. Pirzadeh, M. J. Hemsh, “Data summary from the First AIAA Computational Fluid Dynamics Drag Prediction Workshop”, J. Aircraft, 40:5 (2003), 875–882 | DOI