Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_8_a6, author = {K. M. Abuzyarov and M. H. Abuziarov and A. V. Kochetkov and S. V. Krylov and A. A. Lisitsyn and I. A. Modin}, title = {Application of the {Godunov} scheme to solve three-dimensional problems of high-speed interactions of elastic-plastic bodies}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {97--115}, publisher = {mathdoc}, volume = {35}, number = {8}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_8_a6/} }
TY - JOUR AU - K. M. Abuzyarov AU - M. H. Abuziarov AU - A. V. Kochetkov AU - S. V. Krylov AU - A. A. Lisitsyn AU - I. A. Modin TI - Application of the Godunov scheme to solve three-dimensional problems of high-speed interactions of elastic-plastic bodies JO - Matematičeskoe modelirovanie PY - 2023 SP - 97 EP - 115 VL - 35 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_8_a6/ LA - ru ID - MM_2023_35_8_a6 ER -
%0 Journal Article %A K. M. Abuzyarov %A M. H. Abuziarov %A A. V. Kochetkov %A S. V. Krylov %A A. A. Lisitsyn %A I. A. Modin %T Application of the Godunov scheme to solve three-dimensional problems of high-speed interactions of elastic-plastic bodies %J Matematičeskoe modelirovanie %D 2023 %P 97-115 %V 35 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_8_a6/ %G ru %F MM_2023_35_8_a6
K. M. Abuzyarov; M. H. Abuziarov; A. V. Kochetkov; S. V. Krylov; A. A. Lisitsyn; I. A. Modin. Application of the Godunov scheme to solve three-dimensional problems of high-speed interactions of elastic-plastic bodies. Matematičeskoe modelirovanie, Tome 35 (2023) no. 8, pp. 97-115. http://geodesic.mathdoc.fr/item/MM_2023_35_8_a6/
[1] M. L. Wilkins, “Calculation of elastic-plastic flow”, Methods in Computational physics, v. 3, eds. B. Alder, S. Fernbach, M. Rotenbeg, Academic, New York, 1964, 211
[2] L. M. Kachanov, Osnovy teorii plastichnosti, Nauka, M., 1969, 420 pp.
[3] V. N. Kukudzhanov, “Decomposition method for elastoplastic equations”, Mech. Solids, 2004, no. 1, 73–80
[4] S. K. Godunov, Elementy mekhaniki sploshnoy sredy, Nauka, M., 1978 | MR
[5] I. Peshkov, W. Boscheri, R. Loubre, E. Romenski, M. Dumbser, “Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity”, J. Comput. Phys., 387 (2019), 481–521 | DOI | MR | Zbl
[6] S.K. Godunov (red.), Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR
[7] B. Van Leer, “Towards the ultimate conservative difference scheme V: A second-order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI | Zbl
[8] P. Colella, P. R. Woodward, “The piecewise-parabolic method (PPM) for gas-dynamics simulations”, J. Comput. Phys., 54 (1984), 174–201 | DOI | MR | Zbl
[9] G. H. Miller, P. Colella, “A high-order Eulerian Godunov method for elastic-plastic flow in solids”, J. Comput. Phys., 167 (2001), 131–176 | DOI | Zbl
[10] M. Dumbser, I. Peshkov, E. Romenski, O. Zanotti, “High order ADERschemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids”, J. Comput. Phys., 314 (2016), 824–862 | DOI | MR | Zbl
[11] P. T. Barton, D. Drikakis, E. Romenski, V. A. Titarev, “Exact and approximate solutions of Riemann problems in non-linear elasticity”, J. Comput. Phys., 228 (2009), 7046–7068 | DOI | MR | Zbl
[12] I. Menshov, A. Mischenko, A. Serezkin, “Numerical modeling of elastoplastic flows by the Godunov method on moving eulerian grids”, Mathematical Models and Computer Simulations, 6:2 (2014), 127–141 | DOI | MR | Zbl
[13] V. N. Kukudzhanov, “Coupled models of elastoplasticity and damage and their integration”, Mech. Solids, 2006, 83–109
[14] M. H. Abouziarov, H. Aiso, “An application of retroactive characteristic method to conservative scheme for structure problems (elastic-plastic flows)”, Hyperbolic Problems, Theories, Numerics, Applications, Tenth International Conference in Osaka (September 2004), Yokohama Publishers, Inc., 2006, 223–230 | MR | Zbl
[15] M. H. Abuzyarov, Ye. G. Glazova, A. V. Kochetkov, S. V. Krylov, “Chislennaia metodika resheniia trekhmernykh zadach vzaimodeistviia vysokoskorostnykh gazovykh strui s uprugoplasticheskimi pregradami”, VANT, Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, 2021, no. 4, 24–40 | MR
[16] K. M. Abuzyarov, “Metod raspada razryvov v trekhmernoi dinamike uprugoplasticheskikh sred”, Problemy prochnosti i plastichnosti, 82:3 (2020), 5–17
[17] P. T. Barton, R. Deiterding, D. Meiron, D. Pullin, “Eulerian adaptive finite-difference method for high-velocity impact and penetration problems”, J. Comput. Phys., 240 (2013), 76–99 | DOI | MR
[18] G. H. Miller, P. Colella, “A conservative three-dimensional Eulerian method for coupled fluid-solid shock capturing”, J. Comput. Phys., 183 (2002), 26–82 | DOI | MR | Zbl
[19] P. T. Barton, B. Obadia, D. Drikakis, “A conservative level-set based method for compressible solid/fluid problems on fixed grids”, J. Comput. Phys., 230 (2011), 7867–7890 | DOI | MR | Zbl
[20] J. Haran, N. Nikos, “A unified Eulerian framework for multimaterial continuum mechanics”, Journal of Computational Physics, 401 (2020), 109022 | DOI | MR | Zbl
[21] N. A. Zlatin, G. I. Mishin, Ballisticheskie ustanovki i ikh primenenie v eksperimentalnykh issledovaniiakh, Nauka, M., 1974
[22] M. H. Abuziarov, S. V. Krylov, Ye. V. Tsvetkova, “Modelirovanie gidrouprugoplasticheskogo vzaimodeystviia s pomoshchiu programmnogo kompleksa UPSGOD”, Problemy prochnosti i plastichnosti, 75:1 (2013), 25–32 | MR
[23] A. J. Piekutowski, M. J. Forrestal, K. L. Poormon, T. L., “Warren Perforation of aluminum plates with ogive nose steel rods at normal and oblique impact”, Int. J. Impact Eng., 1996, no. 7–8