Application of the Godunov scheme to solve three-dimensional problems of high-speed interactions of elastic-plastic bodies
Matematičeskoe modelirovanie, Tome 35 (2023) no. 8, pp. 97-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

A 3D technique for modeling high-speed shock-wave interaction of solid deformable bodies with large displacements and deformations in Euler variables is being developed. The numerical technique is based on the use of a modified Godunov scheme of increased accuracy and Euler-Lagrangian multigrid algorithms. The solution of the elastic problem of discontinuity decay for a spatial stress-strain state is used, which depends on time and provides the second order of approximation in time and space in the region of smooth solutions. Three types of computational grids are used for each interacting body with an explicit Lagrangian selection of movable free and contact surfaces. The first type is a Lagrangian surface grid in the form of a continuous set of triangles, which is used both to set the initial geometry of a rigid body and to accompany it during the calculation process, and two types of three-dimensional volumetric grids: a basic Cartesian fixed grid for each body, and auxiliary movable local Euler-Lagrangian grids associated with each triangle of the surface grid. The results of testing the methodology and modeling the processes of high-speed impact interaction of bodies and deep penetration of deformable impactors into elastic-plastic barriers are presented.
Keywords: numerical simulation, Godunov scheme, increased accuracy, multigrid approach, large displacements, three-dimensional problem, deformable impactor, elastic-plastic barrier.
@article{MM_2023_35_8_a6,
     author = {K. M. Abuzyarov and M. H. Abuziarov and A. V. Kochetkov and S. V. Krylov and A. A. Lisitsyn and I. A. Modin},
     title = {Application of the {Godunov} scheme to solve three-dimensional problems of high-speed interactions of elastic-plastic bodies},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--115},
     publisher = {mathdoc},
     volume = {35},
     number = {8},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_8_a6/}
}
TY  - JOUR
AU  - K. M. Abuzyarov
AU  - M. H. Abuziarov
AU  - A. V. Kochetkov
AU  - S. V. Krylov
AU  - A. A. Lisitsyn
AU  - I. A. Modin
TI  - Application of the Godunov scheme to solve three-dimensional problems of high-speed interactions of elastic-plastic bodies
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 97
EP  - 115
VL  - 35
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_8_a6/
LA  - ru
ID  - MM_2023_35_8_a6
ER  - 
%0 Journal Article
%A K. M. Abuzyarov
%A M. H. Abuziarov
%A A. V. Kochetkov
%A S. V. Krylov
%A A. A. Lisitsyn
%A I. A. Modin
%T Application of the Godunov scheme to solve three-dimensional problems of high-speed interactions of elastic-plastic bodies
%J Matematičeskoe modelirovanie
%D 2023
%P 97-115
%V 35
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_8_a6/
%G ru
%F MM_2023_35_8_a6
K. M. Abuzyarov; M. H. Abuziarov; A. V. Kochetkov; S. V. Krylov; A. A. Lisitsyn; I. A. Modin. Application of the Godunov scheme to solve three-dimensional problems of high-speed interactions of elastic-plastic bodies. Matematičeskoe modelirovanie, Tome 35 (2023) no. 8, pp. 97-115. http://geodesic.mathdoc.fr/item/MM_2023_35_8_a6/

[1] M. L. Wilkins, “Calculation of elastic-plastic flow”, Methods in Computational physics, v. 3, eds. B. Alder, S. Fernbach, M. Rotenbeg, Academic, New York, 1964, 211

[2] L. M. Kachanov, Osnovy teorii plastichnosti, Nauka, M., 1969, 420 pp.

[3] V. N. Kukudzhanov, “Decomposition method for elastoplastic equations”, Mech. Solids, 2004, no. 1, 73–80

[4] S. K. Godunov, Elementy mekhaniki sploshnoy sredy, Nauka, M., 1978 | MR

[5] I. Peshkov, W. Boscheri, R. Loubre, E. Romenski, M. Dumbser, “Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity”, J. Comput. Phys., 387 (2019), 481–521 | DOI | MR | Zbl

[6] S.K. Godunov (red.), Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR

[7] B. Van Leer, “Towards the ultimate conservative difference scheme V: A second-order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI | Zbl

[8] P. Colella, P. R. Woodward, “The piecewise-parabolic method (PPM) for gas-dynamics simulations”, J. Comput. Phys., 54 (1984), 174–201 | DOI | MR | Zbl

[9] G. H. Miller, P. Colella, “A high-order Eulerian Godunov method for elastic-plastic flow in solids”, J. Comput. Phys., 167 (2001), 131–176 | DOI | Zbl

[10] M. Dumbser, I. Peshkov, E. Romenski, O. Zanotti, “High order ADERschemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids”, J. Comput. Phys., 314 (2016), 824–862 | DOI | MR | Zbl

[11] P. T. Barton, D. Drikakis, E. Romenski, V. A. Titarev, “Exact and approximate solutions of Riemann problems in non-linear elasticity”, J. Comput. Phys., 228 (2009), 7046–7068 | DOI | MR | Zbl

[12] I. Menshov, A. Mischenko, A. Serezkin, “Numerical modeling of elastoplastic flows by the Godunov method on moving eulerian grids”, Mathematical Models and Computer Simulations, 6:2 (2014), 127–141 | DOI | MR | Zbl

[13] V. N. Kukudzhanov, “Coupled models of elastoplasticity and damage and their integration”, Mech. Solids, 2006, 83–109

[14] M. H. Abouziarov, H. Aiso, “An application of retroactive characteristic method to conservative scheme for structure problems (elastic-plastic flows)”, Hyperbolic Problems, Theories, Numerics, Applications, Tenth International Conference in Osaka (September 2004), Yokohama Publishers, Inc., 2006, 223–230 | MR | Zbl

[15] M. H. Abuzyarov, Ye. G. Glazova, A. V. Kochetkov, S. V. Krylov, “Chislennaia metodika resheniia trekhmernykh zadach vzaimodeistviia vysokoskorostnykh gazovykh strui s uprugoplasticheskimi pregradami”, VANT, Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, 2021, no. 4, 24–40 | MR

[16] K. M. Abuzyarov, “Metod raspada razryvov v trekhmernoi dinamike uprugoplasticheskikh sred”, Problemy prochnosti i plastichnosti, 82:3 (2020), 5–17

[17] P. T. Barton, R. Deiterding, D. Meiron, D. Pullin, “Eulerian adaptive finite-difference method for high-velocity impact and penetration problems”, J. Comput. Phys., 240 (2013), 76–99 | DOI | MR

[18] G. H. Miller, P. Colella, “A conservative three-dimensional Eulerian method for coupled fluid-solid shock capturing”, J. Comput. Phys., 183 (2002), 26–82 | DOI | MR | Zbl

[19] P. T. Barton, B. Obadia, D. Drikakis, “A conservative level-set based method for compressible solid/fluid problems on fixed grids”, J. Comput. Phys., 230 (2011), 7867–7890 | DOI | MR | Zbl

[20] J. Haran, N. Nikos, “A unified Eulerian framework for multimaterial continuum mechanics”, Journal of Computational Physics, 401 (2020), 109022 | DOI | MR | Zbl

[21] N. A. Zlatin, G. I. Mishin, Ballisticheskie ustanovki i ikh primenenie v eksperimentalnykh issledovaniiakh, Nauka, M., 1974

[22] M. H. Abuziarov, S. V. Krylov, Ye. V. Tsvetkova, “Modelirovanie gidrouprugoplasticheskogo vzaimodeystviia s pomoshchiu programmnogo kompleksa UPSGOD”, Problemy prochnosti i plastichnosti, 75:1 (2013), 25–32 | MR

[23] A. J. Piekutowski, M. J. Forrestal, K. L. Poormon, T. L., “Warren Perforation of aluminum plates with ogive nose steel rods at normal and oblique impact”, Int. J. Impact Eng., 1996, no. 7–8