Numerical modeling of melt flow in the Choсhralsky method within the OpenFOAM package using a quasi-hydro dynamic algorithm
Matematičeskoe modelirovanie, Tome 35 (2023) no. 8, pp. 79-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work presents the task statement, the numerical solution method and the description of the test calculation case for modeling the melt flow in the problem of crystal growth by the Chochralsky method. The mathematical model is based on regularized or quasi-hydrodynamic equations to describe the currents of a viscous, non-compressible thermally conductive fluid. The numerical algorithm is implemented on the basis of the OpenFOAM package within the mulesQHDFoam solver. The proposed approach allows calculations of non-stationary three-dimensional flow in a crucible with a given geometry for high numbers Reynolds and Grashoff. As an example, the results of calculating the flow in a simplified configuration crucible are given. An asymmetric transient flow is obtained.
Keywords: OpenFOAM package, Choсhralsky computational case.
Mots-clés : quasi-hydro dynamic algorithm, viscous incompressible fluid
@article{MM_2023_35_8_a5,
     author = {M. A. Kiryushina and T. G. Elizarova and A. S. Epikhin},
     title = {Numerical modeling of melt flow in the {Cho{\cyrs}hralsky} method within the {OpenFOAM} package using a quasi-hydro dynamic algorithm},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--96},
     publisher = {mathdoc},
     volume = {35},
     number = {8},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_8_a5/}
}
TY  - JOUR
AU  - M. A. Kiryushina
AU  - T. G. Elizarova
AU  - A. S. Epikhin
TI  - Numerical modeling of melt flow in the Choсhralsky method within the OpenFOAM package using a quasi-hydro dynamic algorithm
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 79
EP  - 96
VL  - 35
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_8_a5/
LA  - ru
ID  - MM_2023_35_8_a5
ER  - 
%0 Journal Article
%A M. A. Kiryushina
%A T. G. Elizarova
%A A. S. Epikhin
%T Numerical modeling of melt flow in the Choсhralsky method within the OpenFOAM package using a quasi-hydro dynamic algorithm
%J Matematičeskoe modelirovanie
%D 2023
%P 79-96
%V 35
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_8_a5/
%G ru
%F MM_2023_35_8_a5
M. A. Kiryushina; T. G. Elizarova; A. S. Epikhin. Numerical modeling of melt flow in the Choсhralsky method within the OpenFOAM package using a quasi-hydro dynamic algorithm. Matematičeskoe modelirovanie, Tome 35 (2023) no. 8, pp. 79-96. http://geodesic.mathdoc.fr/item/MM_2023_35_8_a5/

[1] L. D. Landau, E. M. Lifshits, Fluid Mechanics, v. 6, Butterworth-Heinemann, 1987 | MR | MR

[2] V. M. Paskonov, V. I. Polezhaev, L. A. Chudov, Chislennoe modelirovanie protsessov teplo- i mascoobmena, Nauka, M., 1984

[3] V. S. Berdnikov, V. I. Polezhaev, A. I. Prostomolotov, “Viscous flow in a cylindrical vessel in the presence of a rotating disk”, Fluid Dynamics, 20 (1985), 690–697 | DOI

[4] M. P. Marchenko, A. S. Senchenkov, I. V. Friazinov, “Matematicheskoe modelirovanie protsessa rosta kristallov iz rastvora-rasplava metodom dvizhushchegosia nagrevatelia”, Matem. modelirovanie, 4:5 (1992), 67–79

[5] N. V. Nikitin, S. A. Nikitin, V. I. Polezhaev, “Konvektivnye neustoichivosti v gidrodinamicheskoi modeli rosta kristallov metodom Chokhralskogo”, Uspekhi mekhaniki, 2 (2003), 63–105

[6] O. A. Bessonov, V. I. Polezhaev, “Unsteady nonaxisymmetric flows in the hydrodynamic Czochralski model at high Prandtl numbers”, Fluid Dynamics, 46 (2011), 684–698 | DOI | MR | Zbl

[7] O. A. Bessonov, “Effect of crystal and crubicle rotation on the flow stability in the Czochralski model at low Prandtl numbers”, Fluid Dynamics, 51:4 (2016), 469–477 | DOI | DOI | MR | Zbl

[8] V. Haslavsky, E. Miroshnichenko, E. Kit, A. Yu. Gelfgat, “Comparison and a possible source of disagreement between experimental and numerical results in a Czochralski model”, FDMP, 9, no. 3, Tech Science Press, 2013, 209–234

[9] Reza Faiez, Farzad Najafi, Yazdan Rezaei, “Convection interaction in GaAs/LEC growth model”, Intern. J. of Computational Eng. Res., 5:7 (2015), 2250–3005

[10] O. A. Bessonov, V. I. Polezhaev, “Konvektivnye vzaimodeistviia i ustoichivost techenii v gidrodinamicheskoi modeli metoda Chokhralskogo”, Aktualnye problemy mekhaniki, 50 let IPMekh im. A.Iu. Ishlinskogo RAN, Nauka, M., 2015, 177–197

[11] Iu. V. Sheretov, Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii, M.–Izhevsk, 2009

[12] Iu. V. Sheretov, Reguliarizovannye uravneniia gidrodinamiki, Tverskoi gosudarstvennyi universitet, Tver, 2016

[13] T.G. Elizarova, Quasi-Gas Dynamic equations, Springer, Berlin, 2009 | MR | Zbl

[14] T. G. Elizarova, I. S. Kalachinskaya, A. V. Kluchnikova, Yu. V. Sheretov, “Application of quasi-hydrodynamic equations in the modeling of low-Prandtl thermal convection”, J. Computational Mathematics and Mathematical Physics, 38:10 (1998), 1662–1671 | MR | Zbl

[15] F. Moukalled, L. Mangani, M. Darwish, Fluid dynamics, its applications. The finite volume method in computational fluid dynamics. An advanced introduction with Open-FOAM and Matlab, Springer, 2015 | MR

[16] M. V. Kraposhin, D. A. Ryazanov, T. G. Elizarova, “Numerical algorithm based on regularized equations for incompressible flow modeling and its implementation in OpenFOAM”, Computer Physics Communications, 271 (2022), 108216 | DOI | MR

[17] D.A. Ryazanov, “Quasi-Hydrodynamic Approach for Simulating Internal Wave Attractors”, MM, 14 (2022), 547–558 | DOI | DOI | MR | Zbl

[18] T. V. Stenina, T. G. Elizarova, M. V. Kraposhin, “Regulyarizovannye uravneniya gidrodinamiki v zadache modelirovaniya diskovogo nasosa i ikh realizatsiya v ramkakh programmnogo kompleksa Open FOAM”, Preprinty IPM im. M.V. Keldysha, 2020, 066, 30 pp. https://library.keldysh.ru/preprint.asp?id=2022-66

[19] D. A. Elizarova, A. V. Ivanov, “Numerical Modeling of Passive Scalar Transport in Shallow Water Based on the Quasi-Gasdynamic Approach”, Computational Mathematics and Mathematical Physics, 60:7 (2020), 1208–1227 | DOI | MR | Zbl

[20] E. V. Shilnikov, T. G. Elizarova, “Kvazigazodinamicheskaia model i chislennyi algoritm dlia opisaniia smesei raznorodnykh fliuidov”, ZhVMiMF, 63:7 (2023), 114–127

[21] https://github.com/unicfdlab/QGDsolver

[22] https://github.com/m-ist/Chochralsky_mulesQHDFoam