Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_8_a5, author = {M. A. Kiryushina and T. G. Elizarova and A. S. Epikhin}, title = {Numerical modeling of melt flow in the {Cho{\cyrs}hralsky} method within the {OpenFOAM} package using a quasi-hydro dynamic algorithm}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {79--96}, publisher = {mathdoc}, volume = {35}, number = {8}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_8_a5/} }
TY - JOUR AU - M. A. Kiryushina AU - T. G. Elizarova AU - A. S. Epikhin TI - Numerical modeling of melt flow in the Choсhralsky method within the OpenFOAM package using a quasi-hydro dynamic algorithm JO - Matematičeskoe modelirovanie PY - 2023 SP - 79 EP - 96 VL - 35 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_8_a5/ LA - ru ID - MM_2023_35_8_a5 ER -
%0 Journal Article %A M. A. Kiryushina %A T. G. Elizarova %A A. S. Epikhin %T Numerical modeling of melt flow in the Choсhralsky method within the OpenFOAM package using a quasi-hydro dynamic algorithm %J Matematičeskoe modelirovanie %D 2023 %P 79-96 %V 35 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_8_a5/ %G ru %F MM_2023_35_8_a5
M. A. Kiryushina; T. G. Elizarova; A. S. Epikhin. Numerical modeling of melt flow in the Choсhralsky method within the OpenFOAM package using a quasi-hydro dynamic algorithm. Matematičeskoe modelirovanie, Tome 35 (2023) no. 8, pp. 79-96. http://geodesic.mathdoc.fr/item/MM_2023_35_8_a5/
[1] L. D. Landau, E. M. Lifshits, Fluid Mechanics, v. 6, Butterworth-Heinemann, 1987 | MR | MR
[2] V. M. Paskonov, V. I. Polezhaev, L. A. Chudov, Chislennoe modelirovanie protsessov teplo- i mascoobmena, Nauka, M., 1984
[3] V. S. Berdnikov, V. I. Polezhaev, A. I. Prostomolotov, “Viscous flow in a cylindrical vessel in the presence of a rotating disk”, Fluid Dynamics, 20 (1985), 690–697 | DOI
[4] M. P. Marchenko, A. S. Senchenkov, I. V. Friazinov, “Matematicheskoe modelirovanie protsessa rosta kristallov iz rastvora-rasplava metodom dvizhushchegosia nagrevatelia”, Matem. modelirovanie, 4:5 (1992), 67–79
[5] N. V. Nikitin, S. A. Nikitin, V. I. Polezhaev, “Konvektivnye neustoichivosti v gidrodinamicheskoi modeli rosta kristallov metodom Chokhralskogo”, Uspekhi mekhaniki, 2 (2003), 63–105
[6] O. A. Bessonov, V. I. Polezhaev, “Unsteady nonaxisymmetric flows in the hydrodynamic Czochralski model at high Prandtl numbers”, Fluid Dynamics, 46 (2011), 684–698 | DOI | MR | Zbl
[7] O. A. Bessonov, “Effect of crystal and crubicle rotation on the flow stability in the Czochralski model at low Prandtl numbers”, Fluid Dynamics, 51:4 (2016), 469–477 | DOI | DOI | MR | Zbl
[8] V. Haslavsky, E. Miroshnichenko, E. Kit, A. Yu. Gelfgat, “Comparison and a possible source of disagreement between experimental and numerical results in a Czochralski model”, FDMP, 9, no. 3, Tech Science Press, 2013, 209–234
[9] Reza Faiez, Farzad Najafi, Yazdan Rezaei, “Convection interaction in GaAs/LEC growth model”, Intern. J. of Computational Eng. Res., 5:7 (2015), 2250–3005
[10] O. A. Bessonov, V. I. Polezhaev, “Konvektivnye vzaimodeistviia i ustoichivost techenii v gidrodinamicheskoi modeli metoda Chokhralskogo”, Aktualnye problemy mekhaniki, 50 let IPMekh im. A.Iu. Ishlinskogo RAN, Nauka, M., 2015, 177–197
[11] Iu. V. Sheretov, Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii, M.–Izhevsk, 2009
[12] Iu. V. Sheretov, Reguliarizovannye uravneniia gidrodinamiki, Tverskoi gosudarstvennyi universitet, Tver, 2016
[13] T.G. Elizarova, Quasi-Gas Dynamic equations, Springer, Berlin, 2009 | MR | Zbl
[14] T. G. Elizarova, I. S. Kalachinskaya, A. V. Kluchnikova, Yu. V. Sheretov, “Application of quasi-hydrodynamic equations in the modeling of low-Prandtl thermal convection”, J. Computational Mathematics and Mathematical Physics, 38:10 (1998), 1662–1671 | MR | Zbl
[15] F. Moukalled, L. Mangani, M. Darwish, Fluid dynamics, its applications. The finite volume method in computational fluid dynamics. An advanced introduction with Open-FOAM and Matlab, Springer, 2015 | MR
[16] M. V. Kraposhin, D. A. Ryazanov, T. G. Elizarova, “Numerical algorithm based on regularized equations for incompressible flow modeling and its implementation in OpenFOAM”, Computer Physics Communications, 271 (2022), 108216 | DOI | MR
[17] D.A. Ryazanov, “Quasi-Hydrodynamic Approach for Simulating Internal Wave Attractors”, MM, 14 (2022), 547–558 | DOI | DOI | MR | Zbl
[18] T. V. Stenina, T. G. Elizarova, M. V. Kraposhin, “Regulyarizovannye uravneniya gidrodinamiki v zadache modelirovaniya diskovogo nasosa i ikh realizatsiya v ramkakh programmnogo kompleksa Open FOAM”, Preprinty IPM im. M.V. Keldysha, 2020, 066, 30 pp. https://library.keldysh.ru/preprint.asp?id=2022-66
[19] D. A. Elizarova, A. V. Ivanov, “Numerical Modeling of Passive Scalar Transport in Shallow Water Based on the Quasi-Gasdynamic Approach”, Computational Mathematics and Mathematical Physics, 60:7 (2020), 1208–1227 | DOI | MR | Zbl
[20] E. V. Shilnikov, T. G. Elizarova, “Kvazigazodinamicheskaia model i chislennyi algoritm dlia opisaniia smesei raznorodnykh fliuidov”, ZhVMiMF, 63:7 (2023), 114–127