Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_8_a3, author = {E. V. Shilnikov and I. R. Khaytaliev}, title = {Application of the local discontinuous {Galerkin} method to the solution of the quasi-gas dynamic equation system}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {51--66}, publisher = {mathdoc}, volume = {35}, number = {8}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_8_a3/} }
TY - JOUR AU - E. V. Shilnikov AU - I. R. Khaytaliev TI - Application of the local discontinuous Galerkin method to the solution of the quasi-gas dynamic equation system JO - Matematičeskoe modelirovanie PY - 2023 SP - 51 EP - 66 VL - 35 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_8_a3/ LA - ru ID - MM_2023_35_8_a3 ER -
%0 Journal Article %A E. V. Shilnikov %A I. R. Khaytaliev %T Application of the local discontinuous Galerkin method to the solution of the quasi-gas dynamic equation system %J Matematičeskoe modelirovanie %D 2023 %P 51-66 %V 35 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_8_a3/ %G ru %F MM_2023_35_8_a3
E. V. Shilnikov; I. R. Khaytaliev. Application of the local discontinuous Galerkin method to the solution of the quasi-gas dynamic equation system. Matematičeskoe modelirovanie, Tome 35 (2023) no. 8, pp. 51-66. http://geodesic.mathdoc.fr/item/MM_2023_35_8_a3/
[1] T.G. Elizarova, Quasi-Gas Dynamic Equations, Springer, Berlin–Heidelberg, 2009, 286 pp. | MR | Zbl
[2] Yan Xu, Chi-Wang Shu, “Local Discontinuous Galerkin Methods for High-Order Time-Dependent Partial Differential Equations”, Communications in Computational Physics, 7:1 (2010), 1–46 | DOI | MR
[3] Dan Ling, Chi-Wang Shu, Wenjing Yan, “Local discontinuous Galerkin methods for diffusive-viscous wave equations”, Journal of Computational and Applied Mathematics, 419 (2023) | DOI | MR | Zbl
[4] Baccouch Mahboub, Comp. Meth. in Applied Mechanics and Engin., 209-212 (2012), 129–143 | DOI | MR | Zbl
[5] B. Cockburn, S. Y. Lin, C. W. Shu, “TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems”, J. of Computational Physics, 84 (1989), 90–113 | DOI | MR | Zbl
[6] B. Cockburn, C. W. Shu, “The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems”, Journal of Computational Physics, 141 (1998), 199–224 | DOI | MR | Zbl
[7] C. W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, J. of Computational Physics, 77 (1988), 439–471 | DOI | MR | Zbl
[8] C.-W. Shu, “TVB uniformly high-order schemes for conservation laws”, Mathematics of Computation, 49 (1987), 105–121 | DOI | MR | Zbl
[9] B. Cockburn, “An Introduction to the Discontinuous Galerkin Method for Convection Dominated Problems”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, 1998, 151–268 | MR | Zbl
[10] B. Cockburn, C. W. Shu, “Foreword for the special issue on discontinuous Galerkin method”, Journal of Scientific Computing, 22 (2005), 1–3 | MR
[11] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Entropic Regularization of the Discontinuous Galerkin Method in Conservative Variables for Two-Dimensional Euler Equations”, MM, 14 (2022), 578–589 | DOI | DOI | MR | Zbl
[12] Y. A. Kriksin, V. F. Tishkin, “Entropy-Stable Discontinuous Galerkin Method for Euler Equations Using Nonconservative Variables”, Mathematical Models and Computer Simulations, 13 (2021), 416–425 | DOI | DOI | MR | Zbl
[13] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Application of the RKDG method for gas dynamics problems”, MM, 6 (2014), 397–407 | MR | Zbl
[14] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Entropic Regularization of the Discontinuous Galerkin Method in Conservative Variables for Two-Dimensional Euler Equations”, MM, 12 (2020), 824–833 | DOI | DOI | MR | Zbl
[15] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Entropic Regularization of the Discontinuous Galerkin Method in Conservative Variables for Two-Dimensional Euler Equations”, MM, 11 (2019), 61–73 | DOI | MR
[16] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG”, MM, 5 (2013), 346–349 | Zbl
[17] B. Cockburn, C. W. Shu, “The local discontinuous Galerkin method for time-dependent convection-diffusion systems”, SIAM Journal on Numerical Analysis, 35 (1998), 2440–2463 | DOI | MR | Zbl
[18] F. Bassi, S. Rebay, “A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations”, Journal of Computational Physics, 131 (1997), 267–279 | DOI | MR | Zbl
[19] J. Yan, C. W. Shu, “A local discontinuous Galerkin method for KdV type equations”, SIAM Journal on Numerical Analysis, 40 (2002), 769–791 | DOI | MR | Zbl
[20] J. Yan, C.-W. Shu, “Local discontinuous Galerkin methods for partial differential equations with higher order derivatives”, Journal of Scientific Computing, 17 (2002), 27–47 | DOI | MR | Zbl
[21] L. Yuan, C. W. Shu, “Discontinuous Galerkin method based on non-polynomial approximation spaces”, Journal of Computational Physics, 218 (2006), 295–323 | DOI | MR | Zbl
[22] R. Liska, B. Wendroff, “Comparison of several difference schemes on ID and 2D test problems for the Euler equations”, SIAM Journal on Scientific Computing, 25:3 (2003), 995–1017 | DOI | MR | Zbl
[23] T. G. Elizarova, E. V. Shil'nikov, “Capabilities of a quasi-gasdynamic algorithm as applied to inviscid gas flow simulation”, Computational Mathematics and Mathematical Physics, 49 (2009), 532–548 | DOI | MR | MR | Zbl
[24] N.S. Koshlyakov, M.M. Smirnov, E.B. Gliner, Differential Equations of Mathematical Physics, North-Holland Publishing, Amsterdam, 1964, 120 pp. | DOI | MR | Zbl
[25] L. Krivodonova, “Limiters for high-order discontinuous Galerkin methods”, Journal of Computational Physics, 226 (2007), 879–896 | DOI | MR | Zbl