Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_8_a2, author = {N. V. Grigorevskiy and A. V. Zemskov and A. V. Malashkin}, title = {Modeling of elastic-diffusion vibrations of a hinged {Timoshenko} plate under the action of a distributed surface load}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {31--50}, publisher = {mathdoc}, volume = {35}, number = {8}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_8_a2/} }
TY - JOUR AU - N. V. Grigorevskiy AU - A. V. Zemskov AU - A. V. Malashkin TI - Modeling of elastic-diffusion vibrations of a hinged Timoshenko plate under the action of a distributed surface load JO - Matematičeskoe modelirovanie PY - 2023 SP - 31 EP - 50 VL - 35 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_8_a2/ LA - ru ID - MM_2023_35_8_a2 ER -
%0 Journal Article %A N. V. Grigorevskiy %A A. V. Zemskov %A A. V. Malashkin %T Modeling of elastic-diffusion vibrations of a hinged Timoshenko plate under the action of a distributed surface load %J Matematičeskoe modelirovanie %D 2023 %P 31-50 %V 35 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_8_a2/ %G ru %F MM_2023_35_8_a2
N. V. Grigorevskiy; A. V. Zemskov; A. V. Malashkin. Modeling of elastic-diffusion vibrations of a hinged Timoshenko plate under the action of a distributed surface load. Matematičeskoe modelirovanie, Tome 35 (2023) no. 8, pp. 31-50. http://geodesic.mathdoc.fr/item/MM_2023_35_8_a2/
[1] K. C. Le, Vibrations of shells and rods, Springer Verlag, Berlin, 1999, 425 pp. | MR | Zbl
[2] V. A. Eremeev, L. M. Zubov, Mekhanika uprugikh obolochek, Nauka, M., 2008, 280 pp.
[3] R. D. Mindlin, J. Yang, An Introduction to the Mathematical Theory of Vibrations of Elastic Plates, World Scientific Publishing, 2006, 212 pp. | MR | Zbl
[4] O. A. Myl'cina, B. V. Savina, G. N. Belostochnyj, “Kolebaniia pologikh obolochek pri vnezapnom vozdeistvii teplovogo potoka”, Izvestiia Saratovskogo universiteta. Novaia seriia. Seriia: Matematika. Mekhanika. Informatika, 14:2 (2014), 227–232
[5] S. H. Sargsyan, A. J. Farmanyan, “Termouprugost mikropoliarnykh ortotropnykh tonkikh obolochek”, Vestnik PNIPU. Mekhanika, 2013, no. 3, 222–237
[6] E. H. Mansfield, The Bending, Stretching of Plates, Cambridge Univ. Press, 2005 | MR
[7] K. C. Le, “An asymptotically exact theory of functionally graded piezoelectric shells”, Int. J. Eng. Sci., 112 (2017), 42–62 | DOI | MR | Zbl
[8] S. Von Ende, R. Lammering, “Modelling and simulation of Lamb wave generation with piezoelectric plates”, Mech. Adv. Mater. And Struct., 16:3 (2009), 188–197 | DOI
[9] W. Q. Chen, K. Y. Lee, H. J. Ding, “On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates”, J. of Sound and Vibration, 279 (2005), 237–251 | DOI
[10] J. Y. Chen, E. Pan, H. L. Chen, “Wave propagation in magneto-electro-elastic multilayered plates”, International Journal of Solids and Structures, 44 (2007), 1073–1085 | DOI | Zbl
[11] V. M. Flyachok, R. N. Shvec, “Nekotorye teoremy teorii mekhanodiffuzii anizotropnykh obolochek”, Mat. metody i fiz. mekh. polia, 1985, no. 21, 32–37 | Zbl
[12] R. N. Shvec, V. M. Flyachok, “Uravneniia mekhanodiffuzii anizotropnykh obolochek s uchetom poperechnykh deformacii”, Matem. metody i fiziko-mekhanich. polia, 1984, no. 20, 54–61 | Zbl
[13] R. N. Shvec, V. M. Flyachok, “Variatsionnyi podkhod k resheniiu dinamicheskikh zadach mekhanotermodiffuzii anizotropnykh obolochek”, Mat. fiz. i nelinein. mekh., 1991, no. 16, 39–43
[14] M. S. Ravrik, “Ob odnoi variatsionnoi formule smeshannogo tipa dlia kontaktnykh zadach termodiffuziinoi teorii deformatsii sloistykh obolochek”, Mat. met. i fiz. mekh. polia, 22 (1985), 40–44 | Zbl
[15] D. Bhattacharya, M. Kanoria, “The influence of two temperature generalized thermoelastic diffusion inside a spherical shell”, Intern. J. of Eng. Tech. Res. (IJETR), 2:5 (2014), 151–159
[16] M. S. Ravrik, A. L. Bichuya, “Osesimmetrichnoe napriazhennoe sostoianie nagretoi transversalno-izotropnoi sfericheskoi obolochki s krugovym otverstiem pri diffuzionnom nasyshchenii”, Mat. metody fiz. mekh. polia, 1983, no. 17, 51–54 | Zbl
[17] M. Aouadi, M. I.M. Copetti, “A dynamic contact problem for a thermoelastic diffusion beam with the rotational inertia”, Applied Numerical Mathematics, 126 (2018), 113–137 | DOI | MR
[18] M. Aouadi, M. I.M. Copetti, “Exponential stability and numerical analysis of a thermoelastic diffusion beam with rotational inertia and second sound”, Mathematics and Computers in Simulation, 187 (2021), 586–613 | DOI | MR
[19] M. Aouadi, A. Miranville, “Smooth attractor for a nonlinear thermoelastic diffusion thin plate based on Gurtin-Pipkin's model”, Asymptotic Analysis, 95 (2015), 129–160 | DOI | MR | Zbl
[20] P. R. Shevchuk, V. A. Shevchuk, “Mechanodiffusion effect in bending a two-layer bar”, Soviet Materials Science, 23:6 (1987), 604–608 | DOI
[21] M. Huang, P. Wei, L. Zhao, Y. Li, “Multiple fields coupled elastic flexural waves in the thermoelastic semiconductor microbeam with consideration of small scale effects”, Composite Structures, 270 (2021) | DOI | MR
[22] R. Kumar, S. Devi, V. Sharma, “Resonance of Nanoscale Beam due to Various Sources in Modified Couple Stress Thermoelastic Diffusion with Phase Lags”, Mechanics and Mechanical Engineering, 23 (2019), 36–49 | DOI
[23] M. Aouadi, “On thermoelastic diffusion thin plate theory”, Appl. Math. Mech. Engl. Ed., 36:5 (2015), 619–632 | DOI | MR | Zbl
[24] M. Aouadi, A. Miranville, “Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory”, Evolution equations control theory, 4:3 (2015), 241–263 | DOI | MR | Zbl
[25] A. V. Zemskov, D. V. Tarlakovskii, N. V. Grigorevskiy, “Modeling an unsteady elastic diffu-sion processes in a Timoshenko plate”, 9th edition of Intern. Conf. on Comput. Meth-ods for Coupled Problems in Sci. Eng., Coupled Problems 2021 | DOI
[26] V. A. Vestyak, A. V. Zemskov, D. V. Tarlakovskii, “Modeling of unsteady elastic diffusion tran-sverse vibrations of the isotropic simply supported Timoshenko plate”, Materials Physics and Mechanics, 50:1 (2022), 141–157
[27] A. G. Knyazeva, Vvedenie v termodinamiku neobratimykh protsessov, Ivan Fedorov, Tomsk, 2014, 172 pp.
[28] V. S. Eremeev, Diffuziia i napriazheniia, Energoatomizdat, M., 1984, 182 pp.
[29] A. V. Zemskov, D. V. Tarlakovskiy, “Two-dimensional nonstationary problem elastic for diffusion an isotropic one-component layer”, J. of Applied Mech. Tech. Phys., 56:6 (2015), 1023–1030 | DOI | MR | Zbl
[30] L. A. Igumnov, D. V. Tarlakovskii, A. V. Zemskov, “A two-dimensional nonstationary problem of elastic diffusion for an orthotropic one-component layer”, Lobachevskii Journal of Mathematics, 38:5 (2017), 808–817 | DOI | MR | Zbl
[31] V. F. Formalev, Teploperenos v anizotropnykh tverdykh telakh. Chislennye metody, teplovye volny, obratnye zadachi, FIZMATLIT, M., 2015, 280 pp.
[32] S. A. Davydov, A. V. Zemskov, “Thermoelastic Diffusion Phase-Lag Model for a Layer with Internal Heat and Mass Sources”, Int. J. of Heat Mass Transfer, 183, part C (2022), 122213 | DOI
[33] S. Timoshenko, Strength of Materials, Van Nostrand, New York, 1956 | MR
[34] G. R. Cowper, “The Shear Coefficient in Timoshenko's Beam Theory”, J. Appl. Mech., 33:2 (1966), 335–340 | DOI | Zbl
[35] E. Yu. Mikhailova, D. V. Tarlakovskii, G. V. Fedotenkov, Obshchaia teoriia uprugikh obolochek, Mosk. Aviats. Inst., M., 2018, 112 pp.
[36] V. A. Ditkin, A. P. Prudnikov, Spravochnik po operatsionnomu ischisleniiu. VSh, M., 1965, 568 pp.
[37] A. P. Babichev, N. A. Babushkina, A. M. Bratkovskij i dr., Fizicheskie velichiny, Spravochnik, Energoatomizdat, M., 1991, 1232 pp.
[38] Yu Gu, A. V. Zemskov, D. V. Tarlakovskii, “Uprugodiffuzionnye kolebaniia izotropnoi plastiny Kirkhgofa-Liava pod deistviem nestatsionarnoi raspredelennoi poperechnoi nagruzki”, Vestnik Permskogo natsion. issled. universiteta. Mekhanika, 2021, no. 3, 48–57
[39] N. H. Nachtrieb, G. S. Handler, “A relaxed vacancy model for diffusion in crystalline metals”, Acta Metallurgica, 2:6 (1954), 797–802 | DOI