Modeling of elastic-diffusion vibrations of a hinged Timoshenko plate under the action of a distributed surface load
Matematičeskoe modelirovanie, Tome 35 (2023) no. 8, pp. 31-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the unsteady problem of a homogeneous orthotropic hinged Timoshenko elastic-diffusion plate under the action of a mechanical distributed surface load bending. The initial mathematical formulation of the problem includes the system of elastic diffusion equations for a continuum, which takes into account the finite diffusion perturbations propagation velocity. The equations of unsteady elastic-diffusion vibrations of the plate are obtained from the equations for a continuum using the generalized principle of virtual displacements and hypotheses of Timoshenko theory. The solution is sought using Laplace transform and expansion into Fourier series. The originals are found analytically, using residues and tables of operational calculus.
Mots-clés : elastic diffusion, Laplace transform
Keywords: unsteady problems, Green's functions, Timoshenko plate.
@article{MM_2023_35_8_a2,
     author = {N. V. Grigorevskiy and A. V. Zemskov and A. V. Malashkin},
     title = {Modeling of elastic-diffusion vibrations of a hinged {Timoshenko} plate under the action of a distributed surface load},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {31--50},
     publisher = {mathdoc},
     volume = {35},
     number = {8},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_8_a2/}
}
TY  - JOUR
AU  - N. V. Grigorevskiy
AU  - A. V. Zemskov
AU  - A. V. Malashkin
TI  - Modeling of elastic-diffusion vibrations of a hinged Timoshenko plate under the action of a distributed surface load
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 31
EP  - 50
VL  - 35
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_8_a2/
LA  - ru
ID  - MM_2023_35_8_a2
ER  - 
%0 Journal Article
%A N. V. Grigorevskiy
%A A. V. Zemskov
%A A. V. Malashkin
%T Modeling of elastic-diffusion vibrations of a hinged Timoshenko plate under the action of a distributed surface load
%J Matematičeskoe modelirovanie
%D 2023
%P 31-50
%V 35
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_8_a2/
%G ru
%F MM_2023_35_8_a2
N. V. Grigorevskiy; A. V. Zemskov; A. V. Malashkin. Modeling of elastic-diffusion vibrations of a hinged Timoshenko plate under the action of a distributed surface load. Matematičeskoe modelirovanie, Tome 35 (2023) no. 8, pp. 31-50. http://geodesic.mathdoc.fr/item/MM_2023_35_8_a2/

[1] K. C. Le, Vibrations of shells and rods, Springer Verlag, Berlin, 1999, 425 pp. | MR | Zbl

[2] V. A. Eremeev, L. M. Zubov, Mekhanika uprugikh obolochek, Nauka, M., 2008, 280 pp.

[3] R. D. Mindlin, J. Yang, An Introduction to the Mathematical Theory of Vibrations of Elastic Plates, World Scientific Publishing, 2006, 212 pp. | MR | Zbl

[4] O. A. Myl'cina, B. V. Savina, G. N. Belostochnyj, “Kolebaniia pologikh obolochek pri vnezapnom vozdeistvii teplovogo potoka”, Izvestiia Saratovskogo universiteta. Novaia seriia. Seriia: Matematika. Mekhanika. Informatika, 14:2 (2014), 227–232

[5] S. H. Sargsyan, A. J. Farmanyan, “Termouprugost mikropoliarnykh ortotropnykh tonkikh obolochek”, Vestnik PNIPU. Mekhanika, 2013, no. 3, 222–237

[6] E. H. Mansfield, The Bending, Stretching of Plates, Cambridge Univ. Press, 2005 | MR

[7] K. C. Le, “An asymptotically exact theory of functionally graded piezoelectric shells”, Int. J. Eng. Sci., 112 (2017), 42–62 | DOI | MR | Zbl

[8] S. Von Ende, R. Lammering, “Modelling and simulation of Lamb wave generation with piezoelectric plates”, Mech. Adv. Mater. And Struct., 16:3 (2009), 188–197 | DOI

[9] W. Q. Chen, K. Y. Lee, H. J. Ding, “On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates”, J. of Sound and Vibration, 279 (2005), 237–251 | DOI

[10] J. Y. Chen, E. Pan, H. L. Chen, “Wave propagation in magneto-electro-elastic multilayered plates”, International Journal of Solids and Structures, 44 (2007), 1073–1085 | DOI | Zbl

[11] V. M. Flyachok, R. N. Shvec, “Nekotorye teoremy teorii mekhanodiffuzii anizotropnykh obolochek”, Mat. metody i fiz. mekh. polia, 1985, no. 21, 32–37 | Zbl

[12] R. N. Shvec, V. M. Flyachok, “Uravneniia mekhanodiffuzii anizotropnykh obolochek s uchetom poperechnykh deformacii”, Matem. metody i fiziko-mekhanich. polia, 1984, no. 20, 54–61 | Zbl

[13] R. N. Shvec, V. M. Flyachok, “Variatsionnyi podkhod k resheniiu dinamicheskikh zadach mekhanotermodiffuzii anizotropnykh obolochek”, Mat. fiz. i nelinein. mekh., 1991, no. 16, 39–43

[14] M. S. Ravrik, “Ob odnoi variatsionnoi formule smeshannogo tipa dlia kontaktnykh zadach termodiffuziinoi teorii deformatsii sloistykh obolochek”, Mat. met. i fiz. mekh. polia, 22 (1985), 40–44 | Zbl

[15] D. Bhattacharya, M. Kanoria, “The influence of two temperature generalized thermoelastic diffusion inside a spherical shell”, Intern. J. of Eng. Tech. Res. (IJETR), 2:5 (2014), 151–159

[16] M. S. Ravrik, A. L. Bichuya, “Osesimmetrichnoe napriazhennoe sostoianie nagretoi transversalno-izotropnoi sfericheskoi obolochki s krugovym otverstiem pri diffuzionnom nasyshchenii”, Mat. metody fiz. mekh. polia, 1983, no. 17, 51–54 | Zbl

[17] M. Aouadi, M. I.M. Copetti, “A dynamic contact problem for a thermoelastic diffusion beam with the rotational inertia”, Applied Numerical Mathematics, 126 (2018), 113–137 | DOI | MR

[18] M. Aouadi, M. I.M. Copetti, “Exponential stability and numerical analysis of a thermoelastic diffusion beam with rotational inertia and second sound”, Mathematics and Computers in Simulation, 187 (2021), 586–613 | DOI | MR

[19] M. Aouadi, A. Miranville, “Smooth attractor for a nonlinear thermoelastic diffusion thin plate based on Gurtin-Pipkin's model”, Asymptotic Analysis, 95 (2015), 129–160 | DOI | MR | Zbl

[20] P. R. Shevchuk, V. A. Shevchuk, “Mechanodiffusion effect in bending a two-layer bar”, Soviet Materials Science, 23:6 (1987), 604–608 | DOI

[21] M. Huang, P. Wei, L. Zhao, Y. Li, “Multiple fields coupled elastic flexural waves in the thermoelastic semiconductor microbeam with consideration of small scale effects”, Composite Structures, 270 (2021) | DOI | MR

[22] R. Kumar, S. Devi, V. Sharma, “Resonance of Nanoscale Beam due to Various Sources in Modified Couple Stress Thermoelastic Diffusion with Phase Lags”, Mechanics and Mechanical Engineering, 23 (2019), 36–49 | DOI

[23] M. Aouadi, “On thermoelastic diffusion thin plate theory”, Appl. Math. Mech. Engl. Ed., 36:5 (2015), 619–632 | DOI | MR | Zbl

[24] M. Aouadi, A. Miranville, “Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory”, Evolution equations control theory, 4:3 (2015), 241–263 | DOI | MR | Zbl

[25] A. V. Zemskov, D. V. Tarlakovskii, N. V. Grigorevskiy, “Modeling an unsteady elastic diffu-sion processes in a Timoshenko plate”, 9th edition of Intern. Conf. on Comput. Meth-ods for Coupled Problems in Sci. Eng., Coupled Problems 2021 | DOI

[26] V. A. Vestyak, A. V. Zemskov, D. V. Tarlakovskii, “Modeling of unsteady elastic diffusion tran-sverse vibrations of the isotropic simply supported Timoshenko plate”, Materials Physics and Mechanics, 50:1 (2022), 141–157

[27] A. G. Knyazeva, Vvedenie v termodinamiku neobratimykh protsessov, Ivan Fedorov, Tomsk, 2014, 172 pp.

[28] V. S. Eremeev, Diffuziia i napriazheniia, Energoatomizdat, M., 1984, 182 pp.

[29] A. V. Zemskov, D. V. Tarlakovskiy, “Two-dimensional nonstationary problem elastic for diffusion an isotropic one-component layer”, J. of Applied Mech. Tech. Phys., 56:6 (2015), 1023–1030 | DOI | MR | Zbl

[30] L. A. Igumnov, D. V. Tarlakovskii, A. V. Zemskov, “A two-dimensional nonstationary problem of elastic diffusion for an orthotropic one-component layer”, Lobachevskii Journal of Mathematics, 38:5 (2017), 808–817 | DOI | MR | Zbl

[31] V. F. Formalev, Teploperenos v anizotropnykh tverdykh telakh. Chislennye metody, teplovye volny, obratnye zadachi, FIZMATLIT, M., 2015, 280 pp.

[32] S. A. Davydov, A. V. Zemskov, “Thermoelastic Diffusion Phase-Lag Model for a Layer with Internal Heat and Mass Sources”, Int. J. of Heat Mass Transfer, 183, part C (2022), 122213 | DOI

[33] S. Timoshenko, Strength of Materials, Van Nostrand, New York, 1956 | MR

[34] G. R. Cowper, “The Shear Coefficient in Timoshenko's Beam Theory”, J. Appl. Mech., 33:2 (1966), 335–340 | DOI | Zbl

[35] E. Yu. Mikhailova, D. V. Tarlakovskii, G. V. Fedotenkov, Obshchaia teoriia uprugikh obolochek, Mosk. Aviats. Inst., M., 2018, 112 pp.

[36] V. A. Ditkin, A. P. Prudnikov, Spravochnik po operatsionnomu ischisleniiu. VSh, M., 1965, 568 pp.

[37] A. P. Babichev, N. A. Babushkina, A. M. Bratkovskij i dr., Fizicheskie velichiny, Spravochnik, Energoatomizdat, M., 1991, 1232 pp.

[38] Yu Gu, A. V. Zemskov, D. V. Tarlakovskii, “Uprugodiffuzionnye kolebaniia izotropnoi plastiny Kirkhgofa-Liava pod deistviem nestatsionarnoi raspredelennoi poperechnoi nagruzki”, Vestnik Permskogo natsion. issled. universiteta. Mekhanika, 2021, no. 3, 48–57

[39] N. H. Nachtrieb, G. S. Handler, “A relaxed vacancy model for diffusion in crystalline metals”, Acta Metallurgica, 2:6 (1954), 797–802 | DOI