Generalized model representations of the theory thermal shock
Matematičeskoe modelirovanie, Tome 35 (2023) no. 8, pp. 14-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers an open problem of the theory of thermal shock in terms of a generalized model of dynamic thermoelasticity under conditions of a locally nonequilibrium heat transfer process. The model was used for a massive body in cases of three coordinates systems: Cartesian coordinates for a body bounded by a flat surface; spherical — for a body with an internal spherical cavity; cylindrical — for a body with an internal cylindrical cavity. Three types of intensive heating and cooling are considered: temperature, thermal, medium heating. The task is set: to obtain an analytical solution, to carry out numerical experiments and to give their physical analysis. As a result, generalized model representations of thermal shock in terms of dynamic thermoelasticity have been developed for locally nonequilibrium heat transfer processes simultaneously in three coordinate systems: Cartesian, spherical, and cylindrical. The presence of curvature of the boundary surface of the thermal shock area substantiates the initial statement of the dynamic problem in displacements using the proposed corresponding "compatibility" equation. The latter made it possible to propose a generalized dynamic model of the thermal reaction of massive bodies with internal cavities simultaneously in Cartesian, spherical and cylindrical coordinate systems under conditions of intense thermal heating and cooling, thermal heating and cooling, heating and cooling by the medium. The model is considered in displacements on the basis of local non-equilibrium heat transfer. An analytical solution for stresses is obtained, a numerical experiment is carried out; the wave nature of the propagation of a thermoelastic wave is described. A comparison with the classical solution is made without taking into account local non-equilibrium. On the basis of the operational solution of the problem, design engineering relations important in practical terms for the upper estimate of the maximum thermal stresses are proposed.
Keywords: heat stroke, generalized dynamic model, analytical solution, thermal stresses.
@article{MM_2023_35_8_a1,
     author = {E. M. Kartashov},
     title = {Generalized model representations of the theory thermal shock},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {14--30},
     publisher = {mathdoc},
     volume = {35},
     number = {8},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_8_a1/}
}
TY  - JOUR
AU  - E. M. Kartashov
TI  - Generalized model representations of the theory thermal shock
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 14
EP  - 30
VL  - 35
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_8_a1/
LA  - ru
ID  - MM_2023_35_8_a1
ER  - 
%0 Journal Article
%A E. M. Kartashov
%T Generalized model representations of the theory thermal shock
%J Matematičeskoe modelirovanie
%D 2023
%P 14-30
%V 35
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_8_a1/
%G ru
%F MM_2023_35_8_a1
E. M. Kartashov. Generalized model representations of the theory thermal shock. Matematičeskoe modelirovanie, Tome 35 (2023) no. 8, pp. 14-30. http://geodesic.mathdoc.fr/item/MM_2023_35_8_a1/

[1] E. M. Kartashov, “Modelnye predstavleniia teplovogo udara v dinamicheskoi termouprugosti”, Rossiiskii tekhnologicheskii zhurnal, 8:2 (2020), 35–108

[2] E. M. Kartashov, E. V. Nenakhov, “Model Representations of a Heat Stroke of a Massive Body with an Internal Cavity”, Math. Mod. and Comp. Simul., 13:6 (2021), 1077–1086 | DOI | DOI | MR | Zbl

[3] E. M. Kartashov, “Novye operatsionnye sootnosheniia dlia matematicheskikh modelei lokalno-neravnovesnogo teploobmena”, Rossiiskii tekhnol. zhurnal, 10:1 (2022), 7–18

[4] I. V. Kudinov, V. A. Kudinov, “Matematicheskaia model lokalno-neravnovesnogo teploperenosa s uchetom prostranstvenno-vremennoi nelokalnosti”, Inzhenerno-fizich. zhurn., 88:2 (2015), 393–408

[5] V. A. Kudinov, A. V. Eremin, I. V. Kudinov, “Razrabotka i issledovanie silno neravnovesnoi modeli teploobmena v zhidkosti s uchetom prostranstvenno-vremennoi nelokalnosti”, Teplofizika i aeromekhanika, 24:6 (2017), 929–935

[6] Iu. A. Kirsanov, A. Iu. Kirsanov, “Ob izmerenii vremeni teplovoi relaksatsii tverdykh tel”, Izv. RAN, Energetika, 2015, no. 1, 113–122

[7] E. M. Kartashov, V. A. Kudinov, Analiticheskie metody teorii teploprovodnosti i ee prilozhenii, URSS, M., 2012, 1080 pp.

[8] S. L. Sobolev, “Transport processes and traveling waves in systems with local nonequilibrium”, Phys. Usp., 34:3 (1991), 217–229 | DOI | DOI | MR

[9] S. L. Sobolev, “Local non-equilibrium transport models”, Phys. Usp., 40:10 (1997), 1043–1053 | DOI | DOI

[10] E. M. Kartashov, “Analiticheskie resheniia giperbolicheskikh modelei teploprovodnosti”, In-zhenerno-fizich. zhurn., 87:5 (2014), 1072–1081

[11] E. M. Kartashov, V. A. Kudinov, Analiticheskaia teoriia teploprovodnosti i termouprugosti, URSS, M., 2012, 670 pp.

[12] E. M. Kartashov, S. V. Polyakov, “Obobshchennye modelnye predstavleniia teorii teplovogo udara dlia lokalno-neravnovesnykh protsessov teploobmena”, Keldysh Institute preprints, 2022, 100, 28 pp.