On accuracy of finite-difference schemes in calculations of centered rarefaction waves
Matematičeskoe modelirovanie, Tome 35 (2023) no. 7, pp. 83-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We carried out a comparative accuracy analysis of three finite-difference schemes (the first order UpWind, the second order TVD and the third order in time WENO5) when calculating for the nonlinear transport equation the Cauchy problem with piecewise linear discontinuous periodic initial data. We showed that in the case of stable initial discontinuities, when a sequence of shocks is formed, the convergence order of all three schemes between shocks coincides with their formal accuracy. In the case of unstable initial discontinuities, when a sequence of centered rarefaction waves is formed, all three schemes have the first order of convergence within these waves. We obtained an explicit formula for the disbalances of difference solutions in a centered rarefaction wave. This formula is agrees well with numerical calculations in the case of high accuracy schemes, does not depend on the scheme type and is determined by the error in approximating the initial data in the vicinity of the unstable strong discontinuity.
Keywords: nonlinear transport equation, shock waves, centered rarefaction waves, shock-capturing schemes.
@article{MM_2023_35_7_a5,
     author = {O. A. Kovyrkina and V. V. Ostapenko},
     title = {On accuracy of finite-difference schemes in calculations of centered rarefaction waves},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {83--96},
     publisher = {mathdoc},
     volume = {35},
     number = {7},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_7_a5/}
}
TY  - JOUR
AU  - O. A. Kovyrkina
AU  - V. V. Ostapenko
TI  - On accuracy of finite-difference schemes in calculations of centered rarefaction waves
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 83
EP  - 96
VL  - 35
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_7_a5/
LA  - ru
ID  - MM_2023_35_7_a5
ER  - 
%0 Journal Article
%A O. A. Kovyrkina
%A V. V. Ostapenko
%T On accuracy of finite-difference schemes in calculations of centered rarefaction waves
%J Matematičeskoe modelirovanie
%D 2023
%P 83-96
%V 35
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_7_a5/
%G ru
%F MM_2023_35_7_a5
O. A. Kovyrkina; V. V. Ostapenko. On accuracy of finite-difference schemes in calculations of centered rarefaction waves. Matematičeskoe modelirovanie, Tome 35 (2023) no. 7, pp. 83-96. http://geodesic.mathdoc.fr/item/MM_2023_35_7_a5/

[1] S. K. Godunov, “Raznostnyj metod chislennogo rascheta razryvnych reshenij uravnenij gidrodinamiki”, Matem. Sbornik, 47:3 (1959), 271–306 | Zbl

[2] B. Cockburn, “An introduction to the discontinuous Galerkin method for convection-dominated problems, advanced numerical approximation of nonlinear hyperbolic equations”, Lect. Notes Math., 1697, 1998, 150–268 | DOI | MR

[3] A. G. Kulikovsky, N. V. Pogorelov, A. Yu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001, 600 pp.

[4] R. J. LeVeque, Finite-volume methods for hyperbolic problems, Cambridge University Press, Cambridge, 2002, 580 pp. | MR | Zbl

[5] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer-Verlag, Berlin–Heidelberg, 2009, 724 pp. | DOI | MR | Zbl

[6] V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, I. A. Korotkin, New algorithms of computational fluid dynamics for multiprocessor computing systems, Ed. Moscow State University, 2013, 472 pp.

[7] C.-W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes”, Acta Numer., 29 (2020), 701–762 | DOI | MR

[8] B. Van Leer, “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | Zbl

[9] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49:3 (1983), 357–393 | DOI | MR | Zbl

[10] A. Kurganov, E. Tadmor, “New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations”, J. Comput. Phys., 160:1 (2000), 241–282 | DOI | MR | Zbl

[11] G. S. Jiang, C.-W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl

[12] S. A. Karabasov, V. M. Goloviznin, “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comput. Phys., 228:19 (2009), 7426–7451 | DOI | MR | Zbl

[13] A. Majda, S. Oher, “Propagation of error into regions of smoothness for accurate difference approximations to hyperbolic equations”, Comm. Pure Appl. Math., 30:6 (1977), 671–705 | DOI | MR | Zbl

[14] V.V. Ostapenko, “Convergence of finite-difference schemes behind a shock front”, Comp. Math. and Math. Phys., 37:10 (1997), 1161–1172 | MR | Zbl

[15] J. Casper, M. H. Carpenter, “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comput., 19:1 (1998), 813–828 https://www.jstor.org/stable/2587267 | DOI | MR | Zbl

[16] B. Engquist, B. Sjogreen, “The convergence rate of finite difference schemes in the presence of shocks”, SIAM J. Numer. Anal., 35 (1998), 2464–2485 https://www.jstor.org/stable/2587267 | DOI | MR | Zbl

[17] V.V. Ostapenko, “Construction of high-order accurate shock-capturing finite-difference schemes for unsteady shock waves”, Comp. Math. and Math. Phys., 40:12 (2000), 1784–1800 | MR | Zbl

[18] O. A. Kovyrkina, V. V. Ostapenko, “On the convergence of shock-capturing difference schemes”, Dokl. Math., 82:1 (2010), 599–603 | DOI | MR | Zbl

[19] N.A. Mikhailov, “The convergence order of WENO schemes behind a shock front”, Math. Models. Comput. Simul., 7:5 (2015), 467–474 | DOI | MR | MR | Zbl

[20] O. A. Kovyrkina, V. V. Ostapenko, “On the construction of combined finite-difference schemes of high accuracy”, Dokl. Math., 97:1 (2018), 77–81 | DOI | DOI | MR | Zbl

[21] N. A. Zyuzina, O. A. Kovyrkina, V. V. Ostapenko, “Monotone finite-difference scheme preserving high accuracy in regions of shock influence”, Dokl. Math., 98:2 (2018), 506–510 | DOI | MR | MR | Zbl

[22] M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “Combined DG scheme that maintains increased accuracy in shock wave areas”, Dokl. Math., 100:3 (2019), 519–523 | DOI | DOI | MR | Zbl

[23] V.V. Rusanov, “Difference schemes of third order accuracy for the through calculation of discontinuous solutions”, Dokl. Akad. Nauk SSSR, 180:6 (1968), 1303–1305 | Zbl

[24] V. V. Ostapenko, N. A. Khandeeva, “The accuracy of finite-difference schemes calculating the interaction of shock waves”, Dokl. Phys., 64:4 (2019), 197–201 | DOI | DOI

[25] P. D. Lax, B. Wendroff, “Systems of conservation laws”, Comm. Pure and Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl