Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_7_a5, author = {O. A. Kovyrkina and V. V. Ostapenko}, title = {On accuracy of finite-difference schemes in calculations of centered rarefaction waves}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {83--96}, publisher = {mathdoc}, volume = {35}, number = {7}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_7_a5/} }
TY - JOUR AU - O. A. Kovyrkina AU - V. V. Ostapenko TI - On accuracy of finite-difference schemes in calculations of centered rarefaction waves JO - Matematičeskoe modelirovanie PY - 2023 SP - 83 EP - 96 VL - 35 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_7_a5/ LA - ru ID - MM_2023_35_7_a5 ER -
O. A. Kovyrkina; V. V. Ostapenko. On accuracy of finite-difference schemes in calculations of centered rarefaction waves. Matematičeskoe modelirovanie, Tome 35 (2023) no. 7, pp. 83-96. http://geodesic.mathdoc.fr/item/MM_2023_35_7_a5/
[1] S. K. Godunov, “Raznostnyj metod chislennogo rascheta razryvnych reshenij uravnenij gidrodinamiki”, Matem. Sbornik, 47:3 (1959), 271–306 | Zbl
[2] B. Cockburn, “An introduction to the discontinuous Galerkin method for convection-dominated problems, advanced numerical approximation of nonlinear hyperbolic equations”, Lect. Notes Math., 1697, 1998, 150–268 | DOI | MR
[3] A. G. Kulikovsky, N. V. Pogorelov, A. Yu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001, 600 pp.
[4] R. J. LeVeque, Finite-volume methods for hyperbolic problems, Cambridge University Press, Cambridge, 2002, 580 pp. | MR | Zbl
[5] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer-Verlag, Berlin–Heidelberg, 2009, 724 pp. | DOI | MR | Zbl
[6] V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, I. A. Korotkin, New algorithms of computational fluid dynamics for multiprocessor computing systems, Ed. Moscow State University, 2013, 472 pp.
[7] C.-W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes”, Acta Numer., 29 (2020), 701–762 | DOI | MR
[8] B. Van Leer, “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | Zbl
[9] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49:3 (1983), 357–393 | DOI | MR | Zbl
[10] A. Kurganov, E. Tadmor, “New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations”, J. Comput. Phys., 160:1 (2000), 241–282 | DOI | MR | Zbl
[11] G. S. Jiang, C.-W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl
[12] S. A. Karabasov, V. M. Goloviznin, “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comput. Phys., 228:19 (2009), 7426–7451 | DOI | MR | Zbl
[13] A. Majda, S. Oher, “Propagation of error into regions of smoothness for accurate difference approximations to hyperbolic equations”, Comm. Pure Appl. Math., 30:6 (1977), 671–705 | DOI | MR | Zbl
[14] V.V. Ostapenko, “Convergence of finite-difference schemes behind a shock front”, Comp. Math. and Math. Phys., 37:10 (1997), 1161–1172 | MR | Zbl
[15] J. Casper, M. H. Carpenter, “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comput., 19:1 (1998), 813–828 https://www.jstor.org/stable/2587267 | DOI | MR | Zbl
[16] B. Engquist, B. Sjogreen, “The convergence rate of finite difference schemes in the presence of shocks”, SIAM J. Numer. Anal., 35 (1998), 2464–2485 https://www.jstor.org/stable/2587267 | DOI | MR | Zbl
[17] V.V. Ostapenko, “Construction of high-order accurate shock-capturing finite-difference schemes for unsteady shock waves”, Comp. Math. and Math. Phys., 40:12 (2000), 1784–1800 | MR | Zbl
[18] O. A. Kovyrkina, V. V. Ostapenko, “On the convergence of shock-capturing difference schemes”, Dokl. Math., 82:1 (2010), 599–603 | DOI | MR | Zbl
[19] N.A. Mikhailov, “The convergence order of WENO schemes behind a shock front”, Math. Models. Comput. Simul., 7:5 (2015), 467–474 | DOI | MR | MR | Zbl
[20] O. A. Kovyrkina, V. V. Ostapenko, “On the construction of combined finite-difference schemes of high accuracy”, Dokl. Math., 97:1 (2018), 77–81 | DOI | DOI | MR | Zbl
[21] N. A. Zyuzina, O. A. Kovyrkina, V. V. Ostapenko, “Monotone finite-difference scheme preserving high accuracy in regions of shock influence”, Dokl. Math., 98:2 (2018), 506–510 | DOI | MR | MR | Zbl
[22] M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “Combined DG scheme that maintains increased accuracy in shock wave areas”, Dokl. Math., 100:3 (2019), 519–523 | DOI | DOI | MR | Zbl
[23] V.V. Rusanov, “Difference schemes of third order accuracy for the through calculation of discontinuous solutions”, Dokl. Akad. Nauk SSSR, 180:6 (1968), 1303–1305 | Zbl
[24] V. V. Ostapenko, N. A. Khandeeva, “The accuracy of finite-difference schemes calculating the interaction of shock waves”, Dokl. Phys., 64:4 (2019), 197–201 | DOI | DOI
[25] P. D. Lax, B. Wendroff, “Systems of conservation laws”, Comm. Pure and Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl