Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_7_a3, author = {Yu. V. Yanilkin and A. R. Guzhova and L. I. Degtyarenko and V. Yu. Kolobyanin and V. A. Shmelev}, title = {Method of direct numerical simulation of turbulence with the account for the process history}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {41--62}, publisher = {mathdoc}, volume = {35}, number = {7}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_7_a3/} }
TY - JOUR AU - Yu. V. Yanilkin AU - A. R. Guzhova AU - L. I. Degtyarenko AU - V. Yu. Kolobyanin AU - V. A. Shmelev TI - Method of direct numerical simulation of turbulence with the account for the process history JO - Matematičeskoe modelirovanie PY - 2023 SP - 41 EP - 62 VL - 35 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_7_a3/ LA - ru ID - MM_2023_35_7_a3 ER -
%0 Journal Article %A Yu. V. Yanilkin %A A. R. Guzhova %A L. I. Degtyarenko %A V. Yu. Kolobyanin %A V. A. Shmelev %T Method of direct numerical simulation of turbulence with the account for the process history %J Matematičeskoe modelirovanie %D 2023 %P 41-62 %V 35 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_7_a3/ %G ru %F MM_2023_35_7_a3
Yu. V. Yanilkin; A. R. Guzhova; L. I. Degtyarenko; V. Yu. Kolobyanin; V. A. Shmelev. Method of direct numerical simulation of turbulence with the account for the process history. Matematičeskoe modelirovanie, Tome 35 (2023) no. 7, pp. 41-62. http://geodesic.mathdoc.fr/item/MM_2023_35_7_a3/
[1] S. M. Bakhrakh, Yu. P. Glagoleva, M. S. Samigulin, V. D. Frolov, N. N. Yanenko, Yu. V. Yanilkin, “Rachet gazodinamicheskikh techenii na osnove metoda kontsentratsii”, DAN SSSR, 276:4 (1981), 566–569 | Zbl
[2] C. W. Hirt, B. D. Nichols, “Volume of fluid (VOF) method for dynamics of free boundaries”, J. Comp. Physics, 39:1 (1981), 201–225 | DOI | Zbl
[3] V. Dyadechko, M. Shashkov, “Reconstruction of multi-material interfaces from moment data”, J. Comp. Physics, 227:11 (2008), 5361–5384 | DOI | MR | Zbl
[4] S. I. Skrypnik, N. M. Rud'ko, R. A. Korolev, V. V. Lyapin, A. V. Popov, “Chislennoe reshenie dvumernykh uravnenii gazodinamiki s teploprovodnostiu s ispolzovaniem peremennogo po razmeru raznostnogo shablona”, VANT, ser. MMFP, 2007, no. 1, 14–26
[5] Yu. V. Yanilkin, S. P. Belyaev, Ya. A. Bondarenko i dr., “Eilerovy chislennye metodiki EGAK i TREK dlia modelirovaniia mnogomernykh techenii mnogokompomponentnoi sredy”, Trudy RFYaTs-VNIIEF. Nauch. issl. izd., 12, RFYaTs-VNIIEF, Sarov, 2008, 54–65
[6] Yu. V. Yanilkin, V. P. Statsenko, V. I. Kozlov, Matematicheskoe modelirovanie turbulentnogo peremeshivaniia szhimaemykh sredakh, Kurs lektsiy 2-kh tt., VNIIEF, Sarov, 2020
[7] V. P. Statsenko, Yu. V. Yanilkin, O. G. Sin'kova, A. L. Stadnik, “Stepen gomogennogo smesheniia po rezultatam 3D chislennykh raschetov gravitatsionnogo turbulentnogo peremeshivaniia”, VANT, ser. TPF, 2007, no. 2–3, 32–40
[8] P. F. Linden, J. M. Redondo, “Molecular mixing in Rayleigh-Taylor instability”, J. Fluid Mech. A, 3:5 (1991), 1269–1277 | MR
[9] Yu. V. Yanilkin, A. R. Guzhova, L. I. Degtyarenko, O. G. Sin'kova, “Opredelenie lokalnoi stepeni gomogennogo smesheniia pri priamom chislennom modelirovanii turbulentnogo peremeshivaniia”, VANT, ser. MMFP, 3 (2020), 3–11
[10] A. S. Kozlovskih, D. V. Neuvazhayev, “Coefficient of heterogeneity in turbulent mixing zone”, Lazer and Particle beams, 18 (2000), 207–212 | DOI
[11] Yu. V. Yanilkin, “Modeli zamykaniia uravnenii lagranzhevoi gazodinamiki i uprugoplastiki v mnogokomponentnykh iacheikakh. Ch. 1. Izotropnye modeli”, VANT, ser. MMFP, 3 (2017), 3–21
[12] Yu. V. Yanilkin, O. O. Toporova, V. Yu. Kolobyanin, “Modeli zamykaniia uravnenii lagranzhevoy gazodinamiki i uprugoplastiki v mnogokomponentnykh iacheikakh. Chast 2. Anizotropnye modeli”, VANT, ser. MMFP, 3 (2017), 22–38
[13] G. Dimonte, D. L. Youngs, A. Dimits et al., “A comparative study of the turbulent Rayleigh-Teylor instability using high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration”, Phys. Fluids, 16:5 (2004), 1668–1693 | DOI | MR
[14] Yu. A. Kucherenko, A. P. Pylayev, V. D. Murzakov i dr., “Eksperimental'noe opredelenie doli molekulyarnogo peremeshivaniya na stadii razvitiya Reley-Teylorovskoy neustoychivosti metodikoy khimicheskogo indikatora”, VII Zababakhinskie nauch. chteniya (Snezhinsk, 2005)
[15] S. W. Weber, G. Dimonte, M. M. Marinak, “ALE simulations turbulent Rayleigh-Taylor instability in 2D and 3D”, 8th International Workshop on the Physics of compressible turbulent mixing (USA, Pasadena, 2001)
[16] A. W. Cook, W. Cabot, P. L. Miller, “The mixing transition in Rayleigh-Taylor instability”, J. Fluid Mech., 511 (2004), 333–362 | DOI | MR | Zbl
[17] D. L. Youngs, “Numerical simulation of mixing by Raylegh-Teylor and Richymyer-Meshkov instabilities”, Laser and Particle Beams, 12:4 (1994), 725–750 | DOI
[18] J. P. Mellado, S. Sarkar, “Large-eddy simulation of Rayleigh-Taylor turbulence with compressible miscible fluids”, Phys. Fluids, 17 (2005), 076101, 20 pp. | DOI | Zbl
[19] Yu. V. Yanilkin, V. P. Statsenko, S. V. Rebrov et al., “Study of gravitational turbulent mixing at large density differences using direct 3D numerical simulation”, 8th International Workshop on the Physics of compressible turbulent mixing (USA, Pasadena, 2001)
[20] A. L. Stadnik, V. P. Statsenko, Yu. V. Yanilkin, “Direct 3D Numerical simulation of gravitational turbulent mixing with Regard to molecular viscosity”, 9th International Workshop on Physics of Compressible Turbulent Mixing (England, Cambridge, 2004) | MR