Optimally controlled turbulent boundary layers in supersonic gas flows
Matematičeskoe modelirovanie, Tome 35 (2023) no. 7, pp. 28-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

A variational problem for a conditional extremum of the Mayer type on the construction of the distribution law of the normal component of the velocity of injection of cooled gas into a turbulent boundary layer under a supersonic flow regime that provides a minimum value of the convective heat flux transmitted from the hot gas to the streamlined surface is considered. The isoperimetric condition is the power of the injection control system, calculated taking into account Darcy's filtration law. To solve the optimal problem, we use the first integral for the conjugate system with respect to Lagrange multipliers, obtained earlier by the authors using the classical theorem of E. Noether on invariant variational problems and the Li-Ovsyannikov infinitesimal apparatus. The method of generalized integral relations of A.A. Dorodnitsyn is used for calculations, which has proven itself well in calculating the characteristics of boundary layers under various flow regimes. A computational experiment conducted for the case of a sphere flow showed the effectiveness of the optimal control law found in comparison with uniform injection: the gain in the value of the minimized functional was 16.8%. The novelty of the work lies in the development of the solution method of the variational problem using the first integral for the conjugate system, as well as the method of generalized integral relations by A.A. Dorodnitsyn. The scientific significance of the work lies in the development of the theory of an optimally controlled boundary layer under a turbulent flow regime in supersonic gas flows. The results obtained may be of interest in the design of systems of active thermal protection of surfaces in high-speed gas flows.
Keywords: turbulent boundary layer, optimal control, supersonic flow, heat flow.
@article{MM_2023_35_7_a2,
     author = {K. G. Garaev and I. R. Mukhametzyanov},
     title = {Optimally controlled turbulent boundary layers in supersonic gas flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {28--40},
     publisher = {mathdoc},
     volume = {35},
     number = {7},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_7_a2/}
}
TY  - JOUR
AU  - K. G. Garaev
AU  - I. R. Mukhametzyanov
TI  - Optimally controlled turbulent boundary layers in supersonic gas flows
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 28
EP  - 40
VL  - 35
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_7_a2/
LA  - ru
ID  - MM_2023_35_7_a2
ER  - 
%0 Journal Article
%A K. G. Garaev
%A I. R. Mukhametzyanov
%T Optimally controlled turbulent boundary layers in supersonic gas flows
%J Matematičeskoe modelirovanie
%D 2023
%P 28-40
%V 35
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_7_a2/
%G ru
%F MM_2023_35_7_a2
K. G. Garaev; I. R. Mukhametzyanov. Optimally controlled turbulent boundary layers in supersonic gas flows. Matematičeskoe modelirovanie, Tome 35 (2023) no. 7, pp. 28-40. http://geodesic.mathdoc.fr/item/MM_2023_35_7_a2/

[1] Yu. V. Lapin, Turbulentnyi pogranichnyi sloi v sverkhzvukovykh potokakh gaza, Nauka, M., 1982, 312 pp.

[2] K. G. Garaev, I. R. Mukhametzyanov, “Problem of optimal control of the turbulent boundary layer on a permeable surface in supersonic gas flow”, Fluid Dynamics, 53:4 (2018), 573–581 | DOI | DOI | MR | Zbl

[3] Lyu Shen-Tsyuan, “Calculation of the laminar boundary layer in a compressible gas in the presence of suction or blowing”, Computational mathematics and mathematical physics, 2:5 (1963), 1000–1020 | DOI | MR | Zbl

[4] S. V. Belov, Poristye metally v mashinostroenii, Mashinostroenie, M., 1981, 247 pp.

[5] A. A. Dorodnitsin, “Laminarnyi pogranichnyi sloi v szhimaemom gaze”, Sbornik teoreticheskikh rabot po aerodinamike, Oborongiz, M., 1957, 140–173

[6] K. G. Garaev, I. R. Mukhametzyanov, V. A. Ovchinnikov, “Integrirovanie uravnenii turbulent-nogo pogranichnogo sloya na sfere v sverkhzvukovom potoke”, Vestnik KGTU im. A.N. Tupoleva, 2009, no. 4, 62–65

[7] A. A. Dorodnitsin, “Ob odnom metode resheniia uravnenii laminarnogo pogranichnogo sloia”, Prikl. matematika i tekhn. fizika, 1960, no. 3, 111–118 | Zbl

[8] K. G. Garaev, “Ob odnom sledstvii is teoremy E. Neter dlia dvukhmernykh variatzionnykh zadach tipa Maiera”, Prikladnaia matematika i mekhanika, 44:3 (1980), 448–453 | MR | Zbl

[9] K. G. Garaev, “O sushchestvovanii pervogo integrala v zadache optimalnogo upravleniia turbulentnym pogranichnym sloem v sverkhzvukovom potoke”, Uchenye zapiski TZAGI, XLIII:1 (2012), 63–70 | MR

[10] E. Noether, “Invariante variation probleme”, Nachr. Kg. Ges. Wiss. Gottingen. Math. Phys. Kl., 1918, 235–257

[11] N. Kh. Ibragimov, “Invariant variational problems and conservation laws”, Theoretical and mathematical physics, 1:3 (1969), 267–274 | DOI | MR

[12] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 399 pp. | MR

[13] K. G. Garaev, Gruppy Li i teoriia Neter v probleme upravleniya s prilozheniiami k optimalnym zadacham pogranichnogo sloia, Izd. Kazan. gos. tekhn. un-ta, Kazan, 1994, 240 pp.

[14] Yu. N. Pavlovskii, “The numerical calculation of the laminar boundary layer in a compressible gas”, Computational mathematics and math. physics, 2:5 (1963), 1021–1042 | DOI | MR

[15] A. A. Lebedev, L. S. Chernobrovkin, Dinamika poleta bespilotnykh letatelnykh apparatov, Mashinostroenie, M., 1973, 616 pp.

[16] K. G. Garaev, I. R. Mukhametzyanov, “To the theory of an optimally controlled boundary layer on permeable surfaces at various flow modes”, Russ. Aeronautics, 63:3 (2020), 413–424 | DOI

[17] K. G. Garaev, V. K. Kuznetsov, “An invariant variational problem of the laminar boundary layer”, Journal of Applied Mathematics and Mechanics, 75:4 (2011), 404–409 | DOI | MR | Zbl