Model of protective film formation in vicinity of slit channel during convective-film cooling of plate
Matematičeskoe modelirovanie, Tome 35 (2023) no. 7, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a nonstationary model of the flow of viscous compressed heat-conducting gas, allowing describing the thermal and velocity fields formed by the main high-temperature gas flowing the outer wall of the wall, internal coolant and jet, creating a cooling film on the protected surface. Gas dynamics is described on the basis of the numerical solution of the system of Navier-Stokes equations by an explicit McCormac scheme with the splitting of the initial operator by spatial directions and a nonlinear correction scheme. The block finite-difference mesh is constructed by the Thompson method with the clustering of nodes in the near-wall region. The Spalart-Allmaras model is used as a model for small scale turbulence. An iterative Seidel method is written for the stationary equation of thermal conductivity in generalized curvilinear coordinates. The fields and ranges of gas dynamic functions on both sides of the plate are determined at different inclination angles of a jet injected from a flat slot. The temperature field of the plate and the film cooling efficiency parameter are defined in a quasi-static approximation. The temperature of the plate surfaces is found using velocity and thermal wall functions.
Keywords: gas dynamics equations, generalized curvilinear coordinates, explicit McCormack scheme, Spalart-Allmaras model, wall functions, convective film cooling.
@article{MM_2023_35_7_a0,
     author = {A. L. Tukmakov and V. V. Kharkov and A. A. Ahunov and N. A. Tukmakova},
     title = {Model of protective film formation in vicinity of slit channel during convective-film cooling of plate},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {35},
     number = {7},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_7_a0/}
}
TY  - JOUR
AU  - A. L. Tukmakov
AU  - V. V. Kharkov
AU  - A. A. Ahunov
AU  - N. A. Tukmakova
TI  - Model of protective film formation in vicinity of slit channel during convective-film cooling of plate
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 3
EP  - 18
VL  - 35
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_7_a0/
LA  - ru
ID  - MM_2023_35_7_a0
ER  - 
%0 Journal Article
%A A. L. Tukmakov
%A V. V. Kharkov
%A A. A. Ahunov
%A N. A. Tukmakova
%T Model of protective film formation in vicinity of slit channel during convective-film cooling of plate
%J Matematičeskoe modelirovanie
%D 2023
%P 3-18
%V 35
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_7_a0/
%G ru
%F MM_2023_35_7_a0
A. L. Tukmakov; V. V. Kharkov; A. A. Ahunov; N. A. Tukmakova. Model of protective film formation in vicinity of slit channel during convective-film cooling of plate. Matematičeskoe modelirovanie, Tome 35 (2023) no. 7, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2023_35_7_a0/

[1] V. I. Lokai, M. N. Bodunov, V. V. Zhuikov, A. V. Shchukin, Teploperedacha v okhlazhdaemykh detaliakh gazoturbinnykh dvigatelei, Mashinostroenie, M., 1993, 287 pp.

[2] E. N. Kablov, O. G. Ospennikova, I. L. Svetlov, “Vysokoeffektivnoe okhlazhdenie lopatok goriachego trakta GTD”, Aviatsionnye materialy i tekhnologii, 2017, no. 2, 3–14

[3] E. Yu. Marchukov, A. V. Starodumov, A. V. Il'inkov, A. V. Shchukin, A. M. Ermakov, V. V. Takmovtsev, I. A. Popov, “The effectiveness of film cooling of a flat surface in an accelerated flow with air injection through fan-shaped holes”, Thermal Eng, 69:4 (2022), 293–301 | DOI | DOI

[4] R. Krewinkel, “A review of gas turbine effusion cooling studies”, International J. of Heat and Mass Transfer, 66 (2013), 706–722 | DOI

[5] R. S. Solomatin, I. V. Semenov, I. S. Menshov, “K raschetu turbulentnykh techenii na osnove modeli Spalarta-Allmarasa s primeneniem LU-SGS-GMRES algoritma”, Preprints of the Keldysh Institute of Applied Mathematics, 2018, 119, 30 pp. | DOI

[6] D. B. Spalding, “A single formula for the “Law of the Wall””, J. of Applied Mechanics, 28:3 (1961), 455–458 | DOI | Zbl

[7] V. R. Efremov, V. V. Kurulin, A. S. Kozelkov, A. A. Kurkin, D. A. Utkin, “The Use of Wall Functions for Simulating the Turbulent Thermal Boundary Layer”, Comput. Math. Math. Phys., 59:6 (2019), 1006–1014 | DOI | MR | Zbl

[8] C.A.J. Fletcher, Computational Techniques for Fluid Dynamics, v. 2, Springer Sci. Business Media, Specific Techniques for Different Flow Categories Scientific Computation, 2012, 494 pp. | MR

[9] J. L. Steger, “Implicit Finite-Difference Simulation of Flow about Arbitrary Two-Dimensional Geometries”, AIAA J., 16:7 (1978), 679–686 | DOI | Zbl

[10] V. V. Azharonok, A. L. Tukmakov, “Dynamics of the working medium of a diffusion-cooled electric-discharge CO$_2$ laser with periodic heat release in the axial region of its cylindrical resonator”, J. of Engineering Physics and Thermophysics, 87:6 (2014), 1469–1479 | DOI

[11] V. M. Kovenia, G. A. Tarnavskyi, S. G. Chernyi, Primenenie metoda rasshcheplenia v zadachah aerodynamiki, Nauka, Sibirskoe otdelenie, Novosibirsk, 1990, 242 pp. | MR

[12] G. A. Mukhachev, V. K. Shchukin, Termodinamika i teploperedacha, Vysshaia shkola, M., 1991, 480 pp.

[13] A. I. Zhmakin, A. A. Fursenko, “A monotone difference scheme for direct calculation”, USSR Computational Mathematics and Math. Phys., 20:4 (1980), 218–227 | DOI | MR

[14] I. S. Berezin, N. P. Zhidkov, Metody vychislenii, v. 1, 2 izd., Fizmatlit, M., 1962, 464 pp. | MR