Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_6_a6, author = {V. A. Gordin}, title = {When an implicit scheme is monotonic}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {96--108}, publisher = {mathdoc}, volume = {35}, number = {6}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_6_a6/} }
V. A. Gordin. When an implicit scheme is monotonic. Matematičeskoe modelirovanie, Tome 35 (2023) no. 6, pp. 96-108. http://geodesic.mathdoc.fr/item/MM_2023_35_6_a6/
[1] S. K. Godunov, “Vospominania o raznostnyh schemah”, Doklad na Mejdunarodnom simpoziume “Method Godunova v gazovoi dinamike” (Michiganskii universitet (SHA), May 1997), Nauchnaia kniga, Novosibirsk, 1997
[2] S. K. Godunov, “Reminiscences about difference schemes”, J. of Computational Physics, 153:1 (1999), 6–25 | DOI | MR | Zbl
[3] A. Harten, J. M. Hyman, P. D. Lax, “On finite difference approximations and entropy conditions for shocks”, Commun. Pure Appl. Math., 29 (1976), 297–322 | DOI | MR | Zbl
[4] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. of Computational Physics, 49:3 (1983), 357–393 | DOI | MR | Zbl
[5] P. D. Lax, “Weak Solutions of Nonlinear Hyperbolic Equations and Their Numerical Computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193 | DOI | MR | Zbl
[6] Xiangyu Y. Hu, Nikolaus A. Adams, Chi-Wang Shu, “Positivity-preserving method for high-order conservative schemes solving compressible Euler equations”, J. of Computational Physics, 242:1 (2013), 169–180 | MR | Zbl
[7] E. Iu. Dnestrovskaia, N. N. Kalitkin, I. V. Ritus, “Reshenie uravnenii v chastnykh proizvodnykh skhemami s kompleksnymi koeffitsientami”, Matem. model., 3:9 (1991), 114–127 | MR | Zbl
[8] V. A. Gordin, E. A. Tsymbalov, “Compact difference scheme for parabolic and Schrodinger-type equations with variable coefficients”, J. Comp. Phys., 375 (2018), 1451–1468 | DOI | MR | Zbl