When an implicit scheme is monotonic
Matematičeskoe modelirovanie, Tome 35 (2023) no. 6, pp. 96-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion is obtained for testing the monotonicity of implicit schemes approximating linear evolution partial differential equations. In some cases, it can also be applied to nonlinear equations. The application of this criterion to the simplest schemes is considered. The criterion can be used in the construction of schemes with improved accuracy and stability properties with the mandatory implementation of the monotonicity property.
Keywords: monotonicity of implicit difference scheme, stability, compact scheme.
Mots-clés : symbol, residue
@article{MM_2023_35_6_a6,
     author = {V. A. Gordin},
     title = {When an implicit scheme is monotonic},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {96--108},
     publisher = {mathdoc},
     volume = {35},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_6_a6/}
}
TY  - JOUR
AU  - V. A. Gordin
TI  - When an implicit scheme is monotonic
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 96
EP  - 108
VL  - 35
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_6_a6/
LA  - ru
ID  - MM_2023_35_6_a6
ER  - 
%0 Journal Article
%A V. A. Gordin
%T When an implicit scheme is monotonic
%J Matematičeskoe modelirovanie
%D 2023
%P 96-108
%V 35
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_6_a6/
%G ru
%F MM_2023_35_6_a6
V. A. Gordin. When an implicit scheme is monotonic. Matematičeskoe modelirovanie, Tome 35 (2023) no. 6, pp. 96-108. http://geodesic.mathdoc.fr/item/MM_2023_35_6_a6/

[1] S. K. Godunov, “Vospominania o raznostnyh schemah”, Doklad na Mejdunarodnom simpoziume “Method Godunova v gazovoi dinamike” (Michiganskii universitet (SHA), May 1997), Nauchnaia kniga, Novosibirsk, 1997

[2] S. K. Godunov, “Reminiscences about difference schemes”, J. of Computational Physics, 153:1 (1999), 6–25 | DOI | MR | Zbl

[3] A. Harten, J. M. Hyman, P. D. Lax, “On finite difference approximations and entropy conditions for shocks”, Commun. Pure Appl. Math., 29 (1976), 297–322 | DOI | MR | Zbl

[4] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. of Computational Physics, 49:3 (1983), 357–393 | DOI | MR | Zbl

[5] P. D. Lax, “Weak Solutions of Nonlinear Hyperbolic Equations and Their Numerical Computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193 | DOI | MR | Zbl

[6] Xiangyu Y. Hu, Nikolaus A. Adams, Chi-Wang Shu, “Positivity-preserving method for high-order conservative schemes solving compressible Euler equations”, J. of Computational Physics, 242:1 (2013), 169–180 | MR | Zbl

[7] E. Iu. Dnestrovskaia, N. N. Kalitkin, I. V. Ritus, “Reshenie uravnenii v chastnykh proizvodnykh skhemami s kompleksnymi koeffitsientami”, Matem. model., 3:9 (1991), 114–127 | MR | Zbl

[8] V. A. Gordin, E. A. Tsymbalov, “Compact difference scheme for parabolic and Schrodinger-type equations with variable coefficients”, J. Comp. Phys., 375 (2018), 1451–1468 | DOI | MR | Zbl