Increasing reliability of well interaction modeling for analysis of flooding system efficiency
Matematičeskoe modelirovanie, Tome 35 (2023) no. 6, pp. 63-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

At present, to analyze the efficiency of the oil field flooding system, proxy models of the CRM family (capacitance-resistive model, capacitance-resistive models) are actively used - mathematical models of the material balance formulated in the framework of the electrodynamic analogy. However, with a large number of production and injection wells, the accuracy of modeling decreases due to the many local minima of the objective function. One of the reasons for this ambiguity of the solution is the lack of a priori information about which injection wells really affect a particular production well. The mask of mutual influence has been determined, which made it possible to significantly reduce the number of determined mutual influence coefficients. A computational algorithm is proposed in which, instead of solving a multi-extremal problem, a sequence of problems with a quadratic objective function and convex constraints on variables in the form of simple inequalities is solved. An example of approbation of the proposed method is given.
Keywords: mathematical modeling of field development, material balance model, CRM, well interference mask, entropy modeling, forecast.
@article{MM_2023_35_6_a4,
     author = {A. N. Tyrsin and S. V. Stepanov and A. A. Ruchkin and A. D. Beckman},
     title = {Increasing reliability of well interaction modeling for analysis of flooding system efficiency},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {63--80},
     publisher = {mathdoc},
     volume = {35},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_6_a4/}
}
TY  - JOUR
AU  - A. N. Tyrsin
AU  - S. V. Stepanov
AU  - A. A. Ruchkin
AU  - A. D. Beckman
TI  - Increasing reliability of well interaction modeling for analysis of flooding system efficiency
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 63
EP  - 80
VL  - 35
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_6_a4/
LA  - ru
ID  - MM_2023_35_6_a4
ER  - 
%0 Journal Article
%A A. N. Tyrsin
%A S. V. Stepanov
%A A. A. Ruchkin
%A A. D. Beckman
%T Increasing reliability of well interaction modeling for analysis of flooding system efficiency
%J Matematičeskoe modelirovanie
%D 2023
%P 63-80
%V 35
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_6_a4/
%G ru
%F MM_2023_35_6_a4
A. N. Tyrsin; S. V. Stepanov; A. A. Ruchkin; A. D. Beckman. Increasing reliability of well interaction modeling for analysis of flooding system efficiency. Matematičeskoe modelirovanie, Tome 35 (2023) no. 6, pp. 63-80. http://geodesic.mathdoc.fr/item/MM_2023_35_6_a4/

[1] Kh. Aziz, A. Settari, Petroleum Reservoir Simulation, Applied Sci. Publ. Ltd, London, 1979

[2] T. A. Pospelova, S. V. Stepanov, A. V. Strekalov, S. V. Sokolov, Matematicheskoe modelirovanie dlia priniatiia reshenii po razrabotke mestorozhdenii, ID Nedra, M., 2021, 427 pp.

[3] A. A. Yousef, P. H. Gentil, J. L. Jensen, L. W. Lake, “A capacitance model to infer interwell connectivity from production and injection rate fluctuations”, SPE Annual Technical Conference and Exhibition (9–12 October 2005, Dallas, Texas) | MR

[4] S. V. Stepanov, S. V. Sokolov, A. A. Ruchkin, A. V. Stepanov, A. V. Knyazev, A. V. Korytov, “Problematika otsenki vzaimovliianiia dobyvaiushchikh i nagnetatelnykh skvazhin na osnove matematicheskogo modelirovaniia”, Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie, 4:3 (2018), 146–164

[5] M. Sayarpour, Development and Application of Capacitance-Resistive Models to Water/CO2 Floods, Ph. D. Dissertation, University of Texas, Austin, TX, USA, 2008

[6] J. S. Kim, L. Lake, Th. F. Edgar, “Integrated Capacitance-Resistance Model for Characterizing Waterflooded Reservoirs”, Proceedings of the 2012 IFAC Workshop on Automatic Control in Offshore Oil and Gas Production (Norwegian University of Science and Technology, Trondheim, Norway, May 31–June 1, 2012), 19–24

[7] I. F. Khatmullin, A. P. Tsanda, A. M. Andrianova, S. A. Budennyy, A. S. Margarit, V. A. Lushpeyev, M. V. Simonov, D. S. Perets, “Poluanaliticheskie modeli rascheta interferentsii skvazhin na baze klassa modelei CRM”, Neftianoe khoziaistvo, 2018, no. 12, 38–41

[8] M. Yu. Dan'ko, L. S. Brilliant, A. S. Zav'yalov, “Primenenie metoda dinamicheskogo material'nogo balansa i CRM-metoda k podshchetu zapasov achimovskikh i bazhenovskikh kollektorov”, Nedropolzovanie XXI vek, 2019, no. 4 (80), 76–85

[9] I. V. Afanaskin, P. V. Kryganov, A. A. Glushakov, P. V. Yalov, “Ispolzovaniye CRM-modelei interferentsii skvazhin dlia otsenki filtratsionno-yemkostnykh svoistv plasta po dannym razrabotki”, Uspekhi kibernetiki, 1:1 (2020), 17–27 | DOI

[10] R. W. Holanda, E. Gildin, J. L. Jensen, L. W. Lake, C. S. Kabir, “A State-of-the-Art Literature Review on Capacitance Resistance Models for Reservoir Characterization and Performance Forecasting”, Energies, 2018

[11] A. D. Bekman, S. V. Stepanov, A. A. Ruchkin, D. V. Zelenin, “Novyi algoritm nakhozhdeniia optimalnogo resheniia zadachi opredeleniia koeffitsientov vzaimovliianiia skvazhin v ramkakh modeli CRM”, Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie, 5:3 (2019), 164–185

[12] S. V. Stepanov, A. D. Bekman, A. A. Ruchkin, T. A. Pospelova, Soprovozhdenie razrabotki neftianykh mestorozhdenii s ispolzovaniem modelei CRM, Ekspress, Tyumen, 2021, 300 pp.

[13] F. S. Kartayev, Vvedenie v ekonometriku, Ekonomicheskii fakultet MGU im. M.V. Lomonosova, M., 2019, 472 pp.

[14] S. V. Stepanov, A. N. Tyrsin, A. A. Ruchkin, T. A. Pospelova, “Ispolzovanie entropiinogo modelirovaniia dlia analiza effektivnosti sistemy zavodneniia”, Neft. khoz-vo, 2020, no. 6, 62–67

[15] A. V. Panteleyev, T. A. Letova, Metody optimizatsii v primerakh i zadachakh, 4-e izd., ispr., Lan, SPb., 2015, 512 pp.

[16] G. E.P. Box, G. M. Jenkins, G. C. Reinsel, G. M. Ljung, Time Series Analysis. Forecasting and Control, 5th edition, Wiley, 2015 | MR

[17] A. N. Tyrsin, Vektornoe entropinoe modelirovanie mnogomernykh stokhasticheskikh sistem, Nauka, M., 2022, 231 pp.

[18] S. A. Ayvazyan, I. S. Yenyukov, L. D. Meshalkin, Prikladnaia statistika: Issledovanie zavisimostei, Finansy i statistika, M., 1985, 487 pp. | MR

[19] Algoritmy NLopt (data obrashcheniia: 22.03.2023)