Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_6_a3, author = {I. V. Derevich and A. A. Panova}, title = {Stochastic model of movement of a group of individuals in a space with boundaries taking into account their social behavior}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {51--62}, publisher = {mathdoc}, volume = {35}, number = {6}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_6_a3/} }
TY - JOUR AU - I. V. Derevich AU - A. A. Panova TI - Stochastic model of movement of a group of individuals in a space with boundaries taking into account their social behavior JO - Matematičeskoe modelirovanie PY - 2023 SP - 51 EP - 62 VL - 35 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_6_a3/ LA - ru ID - MM_2023_35_6_a3 ER -
%0 Journal Article %A I. V. Derevich %A A. A. Panova %T Stochastic model of movement of a group of individuals in a space with boundaries taking into account their social behavior %J Matematičeskoe modelirovanie %D 2023 %P 51-62 %V 35 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_6_a3/ %G ru %F MM_2023_35_6_a3
I. V. Derevich; A. A. Panova. Stochastic model of movement of a group of individuals in a space with boundaries taking into account their social behavior. Matematičeskoe modelirovanie, Tome 35 (2023) no. 6, pp. 51-62. http://geodesic.mathdoc.fr/item/MM_2023_35_6_a3/
[1] M. E. Stepantsov, “Matematicheskaia model napravlennogo dvizheniia gruppy liudei”, Mat. Model., 16:3 (2004), 43–49 | MR | Zbl
[2] A. A. Samartsev, V. A. Kushnikov, V. A. Ivachenko, i dr., “Multiagentnaia model protsessa evakuatsii ludei is pomeshcheniia pri vozniknovenii chrezvychainych situatsii”, Upravlenie technicheskimi sistemami i technologicheskimi protsessami, 2018, no. 72b, 217–244
[3] A. M. Aptukov, D. A. Bratsun, A. V. Lyushnin, “Modelirovanie povedeniia panikuiushchei tolpy v mnogourovnevom razvetvlennom pomeshchenii”, Computernye issledovaniia i modelirovanie, 5:3 (2013), 491–508
[4] E. A. Kotkova, “Sistemno-dinamicheskaia model rasprostraneniia paniki pri evakuatsii iz obshchestvennykh zdanii”, Nauch. analit. zhurn. «Vestnik Saint-Petersburg un-ta GPS MCHS Rossii», 2022, no. 1, 182–194
[5] X. Yang, Z. Wu, Y. Li, “Difference between real-life escape panic and mimic exercises in simulated situation with implications to the statistical physics models of emergency evacuation: The 2008 Wenchuan earthquake”, Physica A, 390 (2011), 2375–2380 | DOI
[6] A. Mohammadi, M. T.U. Chowdhury, S. Yang et al, “Developing levels of pedestrian physical distancing during a pandemic”, Safety Science, 134 (2021), 105066 | DOI
[7] L. Gosce, A. Johansson, “Analytical modelling of the spread of a disease: From corridors to transport networks”, Transportation Research Procedia, 2 (2014), 513–517 | DOI
[8] E. Papadimitriou, G. Yannis, J. Golias, “A critical assessment of pedestrian behaviour models”, Transportation Research Part F, 12 (2009), 242–255 | DOI
[9] S. Zhou, D. Chen, W. Cai, L. Luo et al, “Crowd Modeling and Simulation Technologies”, ACM Transactions on Modeling and Computer Simulation, 20:4 (2010), 1–35 | DOI | MR
[10] F. Martinez-Gil, M. Lozano, I. Garcia-Fernandez et al., “Modeling, Evaluation, and Scale on Artificial Pedestrians: A Literature Review”, ACM Computing Surveys, 50:5 (2017), 1–35 | DOI
[11] D. C. Duives, W. Daamen, S. P. Hoogendoorn, “State-of-the-art crowd motion simulation models”, Transportation Research Part, 37 (2013), 193–209 | DOI
[12] W. Yu, A. Johansson, “Modeling crowd turbulence by many-particle simulations”, Physical Review E, 76 (2007), 046105 | DOI
[13] D. Helbing, P. Molnar, “Social force model for pedestrian dynamics”, Physical Review E, 51:5 (1995), 4282–4286 | DOI
[14] D. Helbing, I. Farkas, T. Vicsek, “Simulating dynamical features of escape panic”, Nature, 407:28 (2000), 487–490 | DOI
[15] M. Ye. Stepantsov, “Kletochnye avtomaty v modelirovanii sotsialno-economicheskikh system”, Proektirovanie budushchego. Problemy tsifrovoi realnosti, trudy 2-i Mezhdunarodnoi konf. (7-8 fevralia 2019, Moskva), IPM im. M.V. Keldysha, M., 2019, 138–143 | DOI
[16] S. Wei-Guo, Y. Yan-Fei, W. Bing-Hong et al, “Evacuation behaviors at exit in CA model with force essentials: A comparison with social force model”, Physica A, 371 (2006), 658–666 | DOI
[17] A. Schadschneider, A. Seyfried, “Validation of CA models of pedestrian dynamics with fundamental diagrams”, Cybernetics Systems: An International J., 40 (2009), 367–389 | DOI | Zbl
[18] A. Kirchner, K. Nishinari, A. Schadschneider, “Friction effects and clogging in a cellular automaton model for pedestrian dynamics”, Physical Review E, 67 (2003), 056122 | DOI
[19] L. F. Henderson, “The statistics of crowd fluids”, Nature, 229:5 (1971), 381–383 | DOI
[20] R. L. Hughes, “The flow of human crowds”, Annu. Rev. Fluid Mech., 35 (2003), 169–182 | DOI | MR | Zbl
[21] S. P. Hoogendoorn, F. Wageningen-Kessels, W. Daamen et al, “Continuum modelling of pedestrian flows: From microscopic principles to self-organized macroscopic phenomena”, Physica A, 416:15, 684–694 | MR
[22] S. P. Hoogendoorn, P. H. L. Bovy, “Pedestrian route-choice and activity scheduling theory and models”, Transportation Research Part B, 38 (2004), 169–190 | DOI
[23] I. V. Derevich, A. K. Klochkov, “Fluctuatsii skorosti chastitsy v viazkom gase so sluchainoi skorostiu v vide summy dvukh korrelirovannykh tsvetnykh shumov”, Matematika i matematicheskoe modelirovanie, 2020, no. 1, 33–49 | MR
[24] K. Debrabant, A. Rø"ßler, “Classification of stochastic Runge-Kutta methods for the weak approximation of stochastic differential equations”, Mathematics Computers in Simul., 77:4 (2008), 408–420 | DOI | MR | Zbl
[25] I. V. Derevich, A. K. Klochkov, “Modeling the motion of particles in the potential force field with allowance for the random velocity fluctuations of a medium”, J. of Eng. Physics and Thermophysics, 95 (2022), 1089–1100 | DOI