Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_6_a2, author = {V. D. Negodin and D. Yu. Fleita and G. E. Norman}, title = {Collective motions of atoms in crystals}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {37--50}, publisher = {mathdoc}, volume = {35}, number = {6}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_6_a2/} }
V. D. Negodin; D. Yu. Fleita; G. E. Norman. Collective motions of atoms in crystals. Matematičeskoe modelirovanie, Tome 35 (2023) no. 6, pp. 37-50. http://geodesic.mathdoc.fr/item/MM_2023_35_6_a2/
[1] H. N.V. Temperley, J. S. Rowlinson, G. S. Rushbrooke, Physics of Simple Liquids, North-Holland Pub. Co., Amsterdam, 1968, 713 pp.
[2] A. V. Zatovskii, N. P. Malomuzh, I. Z. Fisher, “Hydrodynamic asymptotic form of the rotational motion correlation function of a molecule in a liquid”, Sov. Phys. JETP, 38 (1974), 146–150
[3] R.C. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics, Wiley, New York, 1975, 742 pp. | MR
[4] T. Egami, S. J.L. Billinge, Underneath the Bragg Peaks. Structural Analysis of Complex Materials, 2nd ed., Pergamon, Amsterdam, 2012, 422 pp.
[5] J. P. Hansen, I. McDonald, Theory of Simple Liquids. With Applications to Soft Matter, Academic Press, Oxford, 2013, 619 pp. | Zbl
[6] N. P. Malomuzh, T. V. Lokotosh, “Lagrange theory of thermal hydrodynamic fluctuations and collective diffusion in liquids”, Phys. A, 286 (2000), 474–488 | DOI
[7] L. A. Bulavin, T. V. Lokotosh, N. P. Malomuzh, “Role of the collective self-diffusion in water and other liquids”, J. Mol. Liq., 137:1–3 (2008), 1–24 | DOI
[8] W. Schirmacher, B. Schmid, “Theory of collective excitations in simple liquids”, Eur. Phys. J. Special Topics, 196:1 (2011), 3–13 | DOI
[9] Y. D. Fomin, E. Tsiok, V. N. Ryzhov, V. Brazhkin, “Anomalous behavior of dispersion of longitudinal and transverse collective excitations in water”, J. Mol. Liq., 287 (2019), 110992 | DOI
[10] N. V. Priezjev, “Heterogeneous relaxation dynamics in amorphous materials under cyclic loading”, Phys. Rev. E, 87 (2013), 052302 | DOI
[11] N. M. Chtchelkatchev, R. E. Ryltsev, “Complex singularities of the fluid velocity autocorrelation function”, JETP Lett., 102:10 (2015), 643–649 | DOI
[12] M. A. Orekhov, “Coordination Numbers of Bivalent Ions in Organic Solvents”, Rus. J. of Phys. Chem. A, 95 (2021), 2059–2064 | DOI
[13] D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed., Academic Press, Orlando, 2001, 664 pp.
[14] G. E. Norman, V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method”, Math. Mod. and Comp. Sim., 5:4 (2013), 305–333 | MR | Zbl
[15] P. H. Poole, C. Donati, S. C. Glotzer, “Spatial correlations of particle displacements in a glass-forming liquid”, Phys. A, 261 (1998), 51–59 | DOI | MR
[16] N. Lacevic, F. W. Starr, T. B. Schroder, S. C. Glotzer, “Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function”, J. Chem. Phys., 119 (2003), 7372–7387 | DOI
[17] V. Voloshin, G. Malenkov, Y. Naberukhin, “Collective motions in computer models of water. Large-scale and long-time correlations”, J. Struct. Chem., 54:2 (2013), S233–S251
[18] A. V. Anikeenko, G. G. Malenkov, Yu. I. Naberukhin, “Visualization of the collective vortex-like motions in liquid argon and water: Molecular dynamics simulation”, J. Chem. Phys., 148:9 (2018), 094508 | DOI | DOI
[19] A. V. Anikeenko, Yu. I. Naberukhin, “Large-scale and long-term correlations in collective motions of atoms of liquid argon. Computer simulation”, JETP Lett., 106:5 (2017), 290–294 | DOI
[20] A. Anikeenko, G. Malenkov, Y. Naberukhin, “Visualization of vortex movements in a molecular dynamics model of liquid argon”, Dokl. Phys. Chem., 472:1 (2017), 16–18 | DOI
[21] G. E. Norman, V. V. Pisarev, D. I. Fleita, “Singularity at the point of transition from equilibrium to metastable states of a metallic melt”, JETP Lett., 109:10 (2019), 667–670 | DOI
[22] V. Negodin, Y. Polyachenko, D. Fleyta, V. Pisarev, G. Norman, “Kinetic singularities at transition points from equilibrium to metastable states of the Lennard-Jones particle system”, J. Mol. Liq., 322 (2021), 114954 | DOI
[23] G. E. Norman, D. I. Fleita, “Collective Motion of Atoms in a Superheated Crystal and a Supercooled Melt of a Simple Metal”, JETP Lett., 111:4 (2020), 245–250 | DOI
[24] A. Travesset, “Phase diagram of power law and Lennard-Jones systems: Crystal phases”, J. Chem. Phys., 141 (2014), 164501 | DOI
[25] C. Vega, F. J. Blas, A. Galindo, “Extending Wertheim's perturbation theory to the solid phase of Lennard-Jones chains: Determination of the global phase diagram”, J. Chem. Phys., 116:17 (2002), 7645–7655 | DOI
[26] S. Plimpton, “Fast parallel algorithms for short-rangemolecular dynamics”, J. Comput. Phys., 117:1 (1995), 1–19 | DOI | Zbl
[27] V. Stegailov, E. Dlinnova, T. Ismagilov, M. Khalilov, N. Kondratyuk, D. Makagon, A. Semenov, A. Simonov, G. Smirnov, A. Timofeev, “Angara interconnect makes GPU-based Desmos supercomputer an efficient tool for molecular dynamics calculations”, The Int. J. of High Perf. Comp. Appl., 33:3 (2019), 507–521 | DOI
[28] E. Dlinnova, S. Biryukov, V. Stegailov, “Energy consumption of MD calculations on hybrid and CPU-only supercomputers with air and immersion cooling”, Par. Comp. Tech. Tr., Adv. in Par. Comp., 36, 2020, 574–582
[29] A. Shamsutdinov, M. Khalilov, T. Ismagilov, A. Piryugin, S. Biryukov, V. Stegailov, A. Timofeev, “Performance of Supercomputers Based on Angara Interconnect and Novel AMD CPUs/GPUs”, Int. Conf. on Mat. Mod. and Supercomp. Tech., 2020, 401–416 | MR
[30] I. Z. Fisher, Statistical theory of liquids, Univ. of Chicago Press, Chicago, 1964, 335 pp.
[31] G. R. Stewart, “Measurement of low-temperature specific heat”, Rev. of Scientific Instr., 54 (1983), 1–11 | DOI
[32] Seung-Kyo Oh, “Modified Lennard-Jones Potentials with a Reduced Temperature-Correction Parameter for Calculating Thermodynamic and Transport Properties: Noble Gases and Their Mixtures (He, Ne, Ar, Kr, and Xe)”, J. of Thermod., 2013 (2013), 828620
[33] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, v. 5, Statistical Physics, Butterworth-Heinemann, Oxford, 1980, 564 pp. | MR
[34] A. Kh. Khrgian, Fizika atmosfery, Gidrometeoizdat, L., 1969, 645 pp.
[35] L. A. Maksimov, A. V. Mikheenkov, I. Ya. Polishuk, Lektsii po statisticheskoy fizike, uchebnoe posobie, MFTI, M., 2015, 328 pp.
[36] V.L. Ginzburg, D.V. Sivukhin, L.M. Levin, E.S. Chetverikova, Problems in Undergraduate Physics, v. III, Optics, Pergamon Press, Oxford, 1965, 280 pp.