Determining the evaporation rate from the pool surface under active wave formation
Matematičeskoe modelirovanie, Tome 35 (2023) no. 5, pp. 117-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of designing unique building objects in terms of predicting the climatic characteristics of premises is considered. These facilities include the Surfing Center, which is planned to be built in Moscow. An integral part of the design work is the determination of indoor humidity and the selection of parameters for climate control systems. Within the framework of solving this problem, a technique has been developed for modeling the rate of evaporation from the surface of the pool during active waves. The technique is based on the use of computational fluid dynamics methods in combination with the calibration of the empirical constants of the models according to known experimental data for the evaporation rate in still water. The calibrated models are used to predict evaporation rates during active seas. According to the revised method, the correction factor to the formula of the VDI2089 standard is limiting for estimating the rate of evaporation from the surface of the pool for given wave parameters.
Keywords: computational fluid dynamics, room climate, wave evaporation, software STAR-CCM+.
@article{MM_2023_35_5_a7,
     author = {E. B. Voronina and P. S. Kalyasov and A. U. Kudryavtsev and K. V. Shchulepov and S. N. Bruzgin and A. S. Krotov},
     title = {Determining the evaporation rate from the pool surface under active wave formation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {117--126},
     publisher = {mathdoc},
     volume = {35},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_5_a7/}
}
TY  - JOUR
AU  - E. B. Voronina
AU  - P. S. Kalyasov
AU  - A. U. Kudryavtsev
AU  - K. V. Shchulepov
AU  - S. N. Bruzgin
AU  - A. S. Krotov
TI  - Determining the evaporation rate from the pool surface under active wave formation
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 117
EP  - 126
VL  - 35
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_5_a7/
LA  - ru
ID  - MM_2023_35_5_a7
ER  - 
%0 Journal Article
%A E. B. Voronina
%A P. S. Kalyasov
%A A. U. Kudryavtsev
%A K. V. Shchulepov
%A S. N. Bruzgin
%A A. S. Krotov
%T Determining the evaporation rate from the pool surface under active wave formation
%J Matematičeskoe modelirovanie
%D 2023
%P 117-126
%V 35
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_5_a7/
%G ru
%F MM_2023_35_5_a7
E. B. Voronina; P. S. Kalyasov; A. U. Kudryavtsev; K. V. Shchulepov; S. N. Bruzgin; A. S. Krotov. Determining the evaporation rate from the pool surface under active wave formation. Matematičeskoe modelirovanie, Tome 35 (2023) no. 5, pp. 117-126. http://geodesic.mathdoc.fr/item/MM_2023_35_5_a7/

[1] R. Argannikov, “Reconstruction of HVAC system of St”, Isaac's Cathedral. Sustainable build-ing technologies [e-magazine], no. 2, 46–49 (in Russian) (Accessed 22 July 2020) http://zvt.abok.ru/articles/317/Rekonstruktsiia_sistemi_otopleniia_Isaakievskogo_sobora

[2] D. M. Denisihina, “Osobennosti chislennogo modelirovaniia povedeniia vozdushnykh potokov v obiemakh kontsertnykh zalov”, Internet-gurnal “Naukovedenie”, 2014, no. 3

[3] A. G. Perehogencev, “Reshenie zadach teplo- i vlagoobmena v dvumernykh oblastiakh ograzhdaiushchikh konstruktsii zdanii”, Vestnik Volgogradskogo Arkhitecturno-Stroitelnogo universiteta, 2015, no. 39(58), 35–45

[4] W. Tian, X. Han, W. Zuo, M. Sohn, “Building Energy Simulation Coupled with CFD for In-door Environment”, A Critical Review and Recent Applications. Energy and Buildings, 165 (2018), 184–199

[5] Telekanal RBK

[6] Tang Runsheng, Y. Etzion, “Comparative studies on the water evaporation rate from a wetted surface and that from a free water surface”, Building and Environment, 39 (2004), 77–86 | DOI

[7] C. C. Smith, R. Jones, G. Lof, “Energy requirements and potential savings for heated indoor swimming pools”, ASHRAE Transactions, 99:2 (1993), 864–874

[8] S. A. Hanssen, H. M. Mathisen, “Evaporation from swimming pools, in: Roomvent90”, 2nd International Conference (June 1990, Oslo, Norway), 1990 | Zbl

[9] S. M. Bower, J. R. Saylor, “A study of the Sherwood-Rayleigh relation for water undergoing natural convection-driven evaporation”, Intern. J. of Heat and Mass Transfer, 52 (2009), 3055–3063 | DOI

[10] M. M. Shah, “Improved method for calculating evaporation from indoor water pools”, Energy and Buildings, 49 (2012), 306–309 | DOI

[11] M. M. Shah, “New correlation for prediction of evaporation from occupied swimming pools”, ASHRAE Trans., 119:2 (2013), 450–455

[12] L. Garbai, R. Santa, “Flow pattern map for in tube evaporation and condensation”, Proc. of the 4th Intern. symp. on exploitation of renewable energy sources (Subotica, Serbia, 9-10 Mar. 2012), Subotica Tech., Subotica, 2012, 125–130

[13] Z. Li, P. K. Heiselberg, CFD Simulations for Water Evaporation and Airflow Movement in Swimming Baths, Aalborg Universitet, Denmark, 2005

[14] U. P. Kirillov, V. A. Shaposhnicov, L. A. Kuznetsov, V. S. Shiriaev, M. F. Churbanov, “Modelirovanie isparenii zhidkikh veshchestv i kondensatsii ikh parov pri distsiliatscii”, Neorganicheskie materialy, 52:11 (2016), 1256–1261 | DOI

[15] Basseiny plavatelnye zakrytye i otkrytye. Otoplenie, ventiliatsia i podgotovka vody v zakrytykh basseinakh, VDI 2089 Blatt 1-1994, Rossiyskiy institute standartizatsii

[16] Engineer innovation with CFD-focused multiphysics simulation, , Simcenter STAR-CCM+ https://www.plm.automation.siemens.com/global/ru/products/simcenter/STARCCM.html

[17] D. Butterworth, G. F. Hewitt, Two-Phase Flow and Heat Transfer, Oxford Univ. Press, 1974

[18] A. Drew D, S. Passman, Theory of Multicomponent Fluids, Springer, New York, 1998 | MR | Zbl

[19] S. Hardt, F. Wondra, “Evaporation model for interfacial flows based on a continuum-field representation of the source terms”, J. of Comput. Phys., 227:10 (2008), 5871–5895 | DOI | MR | Zbl

[20] C. Rohwer, Evaporation from free water surface, Tech. Bull./US Department Agriculture, No 271, Washington, 1931

[21] W. H. Carrier, “The temperature of evaporation”, ASHVE Trans, 24 (1918), 25–50

[22] M. Gangopadhyaya, G. E. Harbeck, T. J. Nordenson et al, Measurement and estimation of evaporation and evapotranspiration, Tech. Note/World Meteorol. Org., No 83, Geneva, 1966

[23] E. Sartori, “A critical review on equations employed for the calculation of the evaporation rate from free water surfaces”, Solar Energy, 68:1 (2000), 77–89 | DOI

[24] Orvos M., Szabo V., Poos T., “Rate of evaporation from the free surface of a heated liquid”, J. of Appl. Mech. Tech. Phys., 57:6 (2016), 1108–1117 | DOI | DOI

[25] STAR-CCM+ User Guide, 2021

[26] A. V. Grabaruk i dr., Sovremennye podkhody k modelirovaniiu turbulentnosti, ucheb. posobie, SPb., 2016, 234 pp.

[27] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA Journal, 32:8 (1994), 1598–1605 | DOI