Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_5_a7, author = {E. B. Voronina and P. S. Kalyasov and A. U. Kudryavtsev and K. V. Shchulepov and S. N. Bruzgin and A. S. Krotov}, title = {Determining the evaporation rate from the pool surface under active wave formation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {117--126}, publisher = {mathdoc}, volume = {35}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_5_a7/} }
TY - JOUR AU - E. B. Voronina AU - P. S. Kalyasov AU - A. U. Kudryavtsev AU - K. V. Shchulepov AU - S. N. Bruzgin AU - A. S. Krotov TI - Determining the evaporation rate from the pool surface under active wave formation JO - Matematičeskoe modelirovanie PY - 2023 SP - 117 EP - 126 VL - 35 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_5_a7/ LA - ru ID - MM_2023_35_5_a7 ER -
%0 Journal Article %A E. B. Voronina %A P. S. Kalyasov %A A. U. Kudryavtsev %A K. V. Shchulepov %A S. N. Bruzgin %A A. S. Krotov %T Determining the evaporation rate from the pool surface under active wave formation %J Matematičeskoe modelirovanie %D 2023 %P 117-126 %V 35 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_5_a7/ %G ru %F MM_2023_35_5_a7
E. B. Voronina; P. S. Kalyasov; A. U. Kudryavtsev; K. V. Shchulepov; S. N. Bruzgin; A. S. Krotov. Determining the evaporation rate from the pool surface under active wave formation. Matematičeskoe modelirovanie, Tome 35 (2023) no. 5, pp. 117-126. http://geodesic.mathdoc.fr/item/MM_2023_35_5_a7/
[1] R. Argannikov, “Reconstruction of HVAC system of St”, Isaac's Cathedral. Sustainable build-ing technologies [e-magazine], no. 2, 46–49 (in Russian) (Accessed 22 July 2020) http://zvt.abok.ru/articles/317/Rekonstruktsiia_sistemi_otopleniia_Isaakievskogo_sobora
[2] D. M. Denisihina, “Osobennosti chislennogo modelirovaniia povedeniia vozdushnykh potokov v obiemakh kontsertnykh zalov”, Internet-gurnal “Naukovedenie”, 2014, no. 3
[3] A. G. Perehogencev, “Reshenie zadach teplo- i vlagoobmena v dvumernykh oblastiakh ograzhdaiushchikh konstruktsii zdanii”, Vestnik Volgogradskogo Arkhitecturno-Stroitelnogo universiteta, 2015, no. 39(58), 35–45
[4] W. Tian, X. Han, W. Zuo, M. Sohn, “Building Energy Simulation Coupled with CFD for In-door Environment”, A Critical Review and Recent Applications. Energy and Buildings, 165 (2018), 184–199
[5] Telekanal RBK
[6] Tang Runsheng, Y. Etzion, “Comparative studies on the water evaporation rate from a wetted surface and that from a free water surface”, Building and Environment, 39 (2004), 77–86 | DOI
[7] C. C. Smith, R. Jones, G. Lof, “Energy requirements and potential savings for heated indoor swimming pools”, ASHRAE Transactions, 99:2 (1993), 864–874
[8] S. A. Hanssen, H. M. Mathisen, “Evaporation from swimming pools, in: Roomvent90”, 2nd International Conference (June 1990, Oslo, Norway), 1990 | Zbl
[9] S. M. Bower, J. R. Saylor, “A study of the Sherwood-Rayleigh relation for water undergoing natural convection-driven evaporation”, Intern. J. of Heat and Mass Transfer, 52 (2009), 3055–3063 | DOI
[10] M. M. Shah, “Improved method for calculating evaporation from indoor water pools”, Energy and Buildings, 49 (2012), 306–309 | DOI
[11] M. M. Shah, “New correlation for prediction of evaporation from occupied swimming pools”, ASHRAE Trans., 119:2 (2013), 450–455
[12] L. Garbai, R. Santa, “Flow pattern map for in tube evaporation and condensation”, Proc. of the 4th Intern. symp. on exploitation of renewable energy sources (Subotica, Serbia, 9-10 Mar. 2012), Subotica Tech., Subotica, 2012, 125–130
[13] Z. Li, P. K. Heiselberg, CFD Simulations for Water Evaporation and Airflow Movement in Swimming Baths, Aalborg Universitet, Denmark, 2005
[14] U. P. Kirillov, V. A. Shaposhnicov, L. A. Kuznetsov, V. S. Shiriaev, M. F. Churbanov, “Modelirovanie isparenii zhidkikh veshchestv i kondensatsii ikh parov pri distsiliatscii”, Neorganicheskie materialy, 52:11 (2016), 1256–1261 | DOI
[15] Basseiny plavatelnye zakrytye i otkrytye. Otoplenie, ventiliatsia i podgotovka vody v zakrytykh basseinakh, VDI 2089 Blatt 1-1994, Rossiyskiy institute standartizatsii
[16] Engineer innovation with CFD-focused multiphysics simulation, , Simcenter STAR-CCM+ https://www.plm.automation.siemens.com/global/ru/products/simcenter/STARCCM.html
[17] D. Butterworth, G. F. Hewitt, Two-Phase Flow and Heat Transfer, Oxford Univ. Press, 1974
[18] A. Drew D, S. Passman, Theory of Multicomponent Fluids, Springer, New York, 1998 | MR | Zbl
[19] S. Hardt, F. Wondra, “Evaporation model for interfacial flows based on a continuum-field representation of the source terms”, J. of Comput. Phys., 227:10 (2008), 5871–5895 | DOI | MR | Zbl
[20] C. Rohwer, Evaporation from free water surface, Tech. Bull./US Department Agriculture, No 271, Washington, 1931
[21] W. H. Carrier, “The temperature of evaporation”, ASHVE Trans, 24 (1918), 25–50
[22] M. Gangopadhyaya, G. E. Harbeck, T. J. Nordenson et al, Measurement and estimation of evaporation and evapotranspiration, Tech. Note/World Meteorol. Org., No 83, Geneva, 1966
[23] E. Sartori, “A critical review on equations employed for the calculation of the evaporation rate from free water surfaces”, Solar Energy, 68:1 (2000), 77–89 | DOI
[24] Orvos M., Szabo V., Poos T., “Rate of evaporation from the free surface of a heated liquid”, J. of Appl. Mech. Tech. Phys., 57:6 (2016), 1108–1117 | DOI | DOI
[25] STAR-CCM+ User Guide, 2021
[26] A. V. Grabaruk i dr., Sovremennye podkhody k modelirovaniiu turbulentnosti, ucheb. posobie, SPb., 2016, 234 pp.
[27] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA Journal, 32:8 (1994), 1598–1605 | DOI