Whether there was a latent period of COVID-19 development in Saint Petersburg? Mathematical simulation results and facts
Matematičeskoe modelirovanie, Tome 35 (2023) no. 5, pp. 104-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

The hypothesis of a latent period of development of the first wave of COVID-19 in St. Petersburg is being verified. According to this hypothesis, the appearance of the first patient was preceded by the latent formation of a local variant of the pathogen, caused by the introduction of the pathogen from outside and occurring in a mass of individuals with an asymptomatic course. A mathematical model with two developmental branches, asymptomatic and clinically manifest, was proposed. The possibility of exacerbation of the asymptomatic form or its completion is provided. Other features of the model include: accounting for asymptomatic forms, mild and severe forms of the disease, a decline in population immunity due to the genetic drift of the pathogen. Reception of sequential identification of model in conditions of shortage of data is proposed. It is demonstrated that verification of the mathematical model requires a sufficiently large number of asymptomatic individuals at the time of discovery of the first patient, which is an argument in favor of the validity of the hypothesis.
Keywords: asymptomatic infections, latency period, local variant of the pathogen.
@article{MM_2023_35_5_a6,
     author = {I. D. Kolesin and E. M. Zhitkova},
     title = {Whether there was a latent period of {COVID-19} development in {Saint} {Petersburg?} {Mathematical} simulation results and facts},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {104--116},
     publisher = {mathdoc},
     volume = {35},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_5_a6/}
}
TY  - JOUR
AU  - I. D. Kolesin
AU  - E. M. Zhitkova
TI  - Whether there was a latent period of COVID-19 development in Saint Petersburg? Mathematical simulation results and facts
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 104
EP  - 116
VL  - 35
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_5_a6/
LA  - ru
ID  - MM_2023_35_5_a6
ER  - 
%0 Journal Article
%A I. D. Kolesin
%A E. M. Zhitkova
%T Whether there was a latent period of COVID-19 development in Saint Petersburg? Mathematical simulation results and facts
%J Matematičeskoe modelirovanie
%D 2023
%P 104-116
%V 35
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_5_a6/
%G ru
%F MM_2023_35_5_a6
I. D. Kolesin; E. M. Zhitkova. Whether there was a latent period of COVID-19 development in Saint Petersburg? Mathematical simulation results and facts. Matematičeskoe modelirovanie, Tome 35 (2023) no. 5, pp. 104-116. http://geodesic.mathdoc.fr/item/MM_2023_35_5_a6/

[1] A. J. Kucharski, T. W. Russell, C. Diamond et al, “Early dynamics of transmission and control of COVID-19: a mathematical modelling study”, Lancet Infect Dis, 20:5 (2020), 553–558 | DOI

[2] L. Pribylova, V. Hajnova, SEIAR model with asymptomatic cohort and consequences to efficiency of quarantine government measures in COVID-19 epidemic, 2020, arXiv: 2004.02601

[3] G. Gaeta, “A simple SIR model with a large set of asymptomatic infectives”, Mathematics in Engineering, 3:2 (2021), 1–39 | DOI | MR

[4] G. Giordano, F. Blanchini, R. Bruno et al, “Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy”, Nat Med, 26 (2020), 855–860 | DOI

[5] HY Cheng, SW Jian, DP Liu, TC Ng, WT Huang, HH Lin et al, “Contact Tracing Assess-ment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods Before and After Symptom Onset”, JAMA Intern Med, 180 (2020), 1156–63 | DOI

[6] V. D. Belyakov, D. B. Golubev, G. D. Kaminskij, V. V. Tec, Samoreguliatsiia parazitarnykh sistem: (molekuliarno-geneticheskie mekhanizmy), Meditsina, L., 1987, 240 pp.

[7] I. V. Feldblium, S. O. Golognova, V. V. Semerikov, “Uroven i vnutrigodovaia dinamika nositelstva S. Pneumoniae sredi raznykh grupp vzroslogo naseleniia”, Epidemiologiia i infektsionnye bolezni. Aktualnye voprosy, 2015, no. 5, 13–16

[8] S. Felsenstein, J. A. Herbert, P. S. McNamara, C. M. Hedrich, “COVID-19: Immunology and treatment options”, Clin. Immunol, 215 (2020), 108448 | DOI

[9] P. Sah, M. C. Fitzpatrick, C. F. Zimmer et al, “Asymptomatic SARS-CoV-2 infection: A systematic review and meta-analysis”, Proc. of the National Academy of Sciences, 118:34 (2021), e2109229118 | DOI

[10] M. Alene, L. Yismaw, M. A. Assemie, D. B. Ketema, B. Mengist, B. Kassie, T. Y. Birhan, “Magnitude of asymptomatic COVID-19 cases throughout the course of infection: A systematic review and meta-analysis”, PloS one, 16:3 (2021), e0249090 | DOI

[11] A. B. Zhebrun, S. L. Mukomolov, O. V. Narvskaya, “Genotipirovanie i molekulyarnoe markirovanie bakterij i virusov v epidemiologicheskom nadzore za aktual'nymi infekciyami”, Zhurnal mikrobiologii, epidemiologii i immunologii, 88:4 (2011), 28–36

[12] I. D. Kolesin, “Analysis of mechanism of formation of epidemic variant of disease activator”, Biophysics, 59 (2014), 511–513 | DOI

[13] K. O. Mironov, A. E. Platonov, M. K. Nikolaev i dr., “Geneticheskaya harakteristika shtammov Haemophilus influenza serotipa B, izolirovanny v regionax Rossii”, Zhurnal mikrobiologii, epidemiologii i immunobiologii, 2010, no. 1, 24–28

[14] A. Yu. Popova, E. B. Ezhlova, A. A. Melnikova i dr., “Raspredelenie seroprevalentnosti k SARS-CoV-2 sredi zhitelej Tyumenskoj oblasti v epidemicheskom periode COVID-19”, Zhurnal mikrobiologii, epidemiologii i immunobiologii, 97:5 (2020), 392–400 | DOI

[15] B. F. Maier, D. Brockmann, “Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China”, Science, 368:6492 (2020), 742–746 | DOI | MR | Zbl

[16] J. L. Gevertz, J. M. Greene, C. H. Sanchez-Tapia, E. D. Sontag, “A novel COVID-19 epidemiological model with explicit susceptible and asymptomatic isolation compartments reveals unexpected consequences of timing social distancing”, J. of Theoretical Biology, 510 (2021), 110539 | DOI | MR

[17] S. E. Eikenberry, M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang et al, “To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic”, Infectious disease modelling, 2020, no. 5, 293–308 | DOI | MR

[18] A. Yu. Popova, E. B. Ezhlova, A. A. Mel'nikova i dr., “Populiatsionnyi immunitet k SARS-CoV-2 sredi naseleniia Sankt-Peterburga v period epidemii COVID-19”, Problemy osobo opasnykh infektsii, 2020, no. 3, 124–130 | DOI

[19] W. O. Kermack, A. G. McKendrick, “A contribution to the mathematical theory of epidemics”, Proc. of the royal society of London. Series A, Containing papers of a mathematical and physical character, 115:772 (1927), 700–721 | DOI

[20] WHO. Clinical Management of COVID-19: Interim Guidance, , 2020 https://apps.who.int/iris/handle/10665/332196

[21] A. Yu. Popova, E. B. Ezhlova, A. A. Mel'nikova i dr., “Otsenka populiatsionnogo immuniteta k SARS-CoV-2 sredi naseleniia Leningradskoi oblasti v period epidemii COVID-19”, Problemy osobo opasnykh infektsii, 2020, no. 3, 114–123 | DOI

[22] Y. Wan, J. Shang, S. Sun et al, “Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry”, J. Virol, 5 | DOI | MR

[23] R. Anderson, R. May, Human infectious diseases. Dynamics and control, Oxford University Press, Oxford, 1991, 757 pp.

[24] W. O. Kermack, A. G. McKendrick, “Contributions to the mathematical theory of epidemics. II. The problem of endemicity”, Proceedings of the Royal Society of London. Series A, containing papers of a mathematical and physical character, 138A:834 (1932), 55–83 | Zbl

[25] Yu. D. Nechipurenko, A. A. Anashkina, O. V. Matveeva, “Change of Antigenic Determinants of SARS-CoV-2 Virus S-Protein as a Possible Cause of Antibody-Dependent Enhancement of Virus Infection and Cytokine Storm”, Biophysics, 65:4 (2020), 703–709 | DOI | DOI

[26] Y. Yi, PNP. Lagniton, S. Ye, E. Li, R-H. Xu, “COVID-19: what has been learned and to be learned about the novel coronavirus disease”, Int. J. Biol. Sci, 16:10 (2020), 1753–1766 | DOI

[27] V. G. Akimkin, S. N. Kuzin, E. N. Kolosovskaya i dr., “Harakteristika epidemiologicheskoj situacii po COVID-19 v Sankt-Peterburge”, Zhurnal mikrobiologii, epidemiologii i immunobiologii, 98:5 (2021), 497–511 | DOI

[28] G. Massonis, J. R. Banga, A. F. Villaverde, “Structural identifiability and observability of compartmental models of the COVID-19 pandemic”, Annual Reviews in Control, 51 (2021), 441–459 | DOI | MR