Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_5_a6, author = {I. D. Kolesin and E. M. Zhitkova}, title = {Whether there was a latent period of {COVID-19} development in {Saint} {Petersburg?} {Mathematical} simulation results and facts}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {104--116}, publisher = {mathdoc}, volume = {35}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_5_a6/} }
TY - JOUR AU - I. D. Kolesin AU - E. M. Zhitkova TI - Whether there was a latent period of COVID-19 development in Saint Petersburg? Mathematical simulation results and facts JO - Matematičeskoe modelirovanie PY - 2023 SP - 104 EP - 116 VL - 35 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_5_a6/ LA - ru ID - MM_2023_35_5_a6 ER -
%0 Journal Article %A I. D. Kolesin %A E. M. Zhitkova %T Whether there was a latent period of COVID-19 development in Saint Petersburg? Mathematical simulation results and facts %J Matematičeskoe modelirovanie %D 2023 %P 104-116 %V 35 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_5_a6/ %G ru %F MM_2023_35_5_a6
I. D. Kolesin; E. M. Zhitkova. Whether there was a latent period of COVID-19 development in Saint Petersburg? Mathematical simulation results and facts. Matematičeskoe modelirovanie, Tome 35 (2023) no. 5, pp. 104-116. http://geodesic.mathdoc.fr/item/MM_2023_35_5_a6/
[1] A. J. Kucharski, T. W. Russell, C. Diamond et al, “Early dynamics of transmission and control of COVID-19: a mathematical modelling study”, Lancet Infect Dis, 20:5 (2020), 553–558 | DOI
[2] L. Pribylova, V. Hajnova, SEIAR model with asymptomatic cohort and consequences to efficiency of quarantine government measures in COVID-19 epidemic, 2020, arXiv: 2004.02601
[3] G. Gaeta, “A simple SIR model with a large set of asymptomatic infectives”, Mathematics in Engineering, 3:2 (2021), 1–39 | DOI | MR
[4] G. Giordano, F. Blanchini, R. Bruno et al, “Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy”, Nat Med, 26 (2020), 855–860 | DOI
[5] HY Cheng, SW Jian, DP Liu, TC Ng, WT Huang, HH Lin et al, “Contact Tracing Assess-ment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods Before and After Symptom Onset”, JAMA Intern Med, 180 (2020), 1156–63 | DOI
[6] V. D. Belyakov, D. B. Golubev, G. D. Kaminskij, V. V. Tec, Samoreguliatsiia parazitarnykh sistem: (molekuliarno-geneticheskie mekhanizmy), Meditsina, L., 1987, 240 pp.
[7] I. V. Feldblium, S. O. Golognova, V. V. Semerikov, “Uroven i vnutrigodovaia dinamika nositelstva S. Pneumoniae sredi raznykh grupp vzroslogo naseleniia”, Epidemiologiia i infektsionnye bolezni. Aktualnye voprosy, 2015, no. 5, 13–16
[8] S. Felsenstein, J. A. Herbert, P. S. McNamara, C. M. Hedrich, “COVID-19: Immunology and treatment options”, Clin. Immunol, 215 (2020), 108448 | DOI
[9] P. Sah, M. C. Fitzpatrick, C. F. Zimmer et al, “Asymptomatic SARS-CoV-2 infection: A systematic review and meta-analysis”, Proc. of the National Academy of Sciences, 118:34 (2021), e2109229118 | DOI
[10] M. Alene, L. Yismaw, M. A. Assemie, D. B. Ketema, B. Mengist, B. Kassie, T. Y. Birhan, “Magnitude of asymptomatic COVID-19 cases throughout the course of infection: A systematic review and meta-analysis”, PloS one, 16:3 (2021), e0249090 | DOI
[11] A. B. Zhebrun, S. L. Mukomolov, O. V. Narvskaya, “Genotipirovanie i molekulyarnoe markirovanie bakterij i virusov v epidemiologicheskom nadzore za aktual'nymi infekciyami”, Zhurnal mikrobiologii, epidemiologii i immunologii, 88:4 (2011), 28–36
[12] I. D. Kolesin, “Analysis of mechanism of formation of epidemic variant of disease activator”, Biophysics, 59 (2014), 511–513 | DOI
[13] K. O. Mironov, A. E. Platonov, M. K. Nikolaev i dr., “Geneticheskaya harakteristika shtammov Haemophilus influenza serotipa B, izolirovanny v regionax Rossii”, Zhurnal mikrobiologii, epidemiologii i immunobiologii, 2010, no. 1, 24–28
[14] A. Yu. Popova, E. B. Ezhlova, A. A. Melnikova i dr., “Raspredelenie seroprevalentnosti k SARS-CoV-2 sredi zhitelej Tyumenskoj oblasti v epidemicheskom periode COVID-19”, Zhurnal mikrobiologii, epidemiologii i immunobiologii, 97:5 (2020), 392–400 | DOI
[15] B. F. Maier, D. Brockmann, “Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China”, Science, 368:6492 (2020), 742–746 | DOI | MR | Zbl
[16] J. L. Gevertz, J. M. Greene, C. H. Sanchez-Tapia, E. D. Sontag, “A novel COVID-19 epidemiological model with explicit susceptible and asymptomatic isolation compartments reveals unexpected consequences of timing social distancing”, J. of Theoretical Biology, 510 (2021), 110539 | DOI | MR
[17] S. E. Eikenberry, M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang et al, “To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic”, Infectious disease modelling, 2020, no. 5, 293–308 | DOI | MR
[18] A. Yu. Popova, E. B. Ezhlova, A. A. Mel'nikova i dr., “Populiatsionnyi immunitet k SARS-CoV-2 sredi naseleniia Sankt-Peterburga v period epidemii COVID-19”, Problemy osobo opasnykh infektsii, 2020, no. 3, 124–130 | DOI
[19] W. O. Kermack, A. G. McKendrick, “A contribution to the mathematical theory of epidemics”, Proc. of the royal society of London. Series A, Containing papers of a mathematical and physical character, 115:772 (1927), 700–721 | DOI
[20] WHO. Clinical Management of COVID-19: Interim Guidance, , 2020 https://apps.who.int/iris/handle/10665/332196
[21] A. Yu. Popova, E. B. Ezhlova, A. A. Mel'nikova i dr., “Otsenka populiatsionnogo immuniteta k SARS-CoV-2 sredi naseleniia Leningradskoi oblasti v period epidemii COVID-19”, Problemy osobo opasnykh infektsii, 2020, no. 3, 114–123 | DOI
[22] Y. Wan, J. Shang, S. Sun et al, “Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry”, J. Virol, 5 | DOI | MR
[23] R. Anderson, R. May, Human infectious diseases. Dynamics and control, Oxford University Press, Oxford, 1991, 757 pp.
[24] W. O. Kermack, A. G. McKendrick, “Contributions to the mathematical theory of epidemics. II. The problem of endemicity”, Proceedings of the Royal Society of London. Series A, containing papers of a mathematical and physical character, 138A:834 (1932), 55–83 | Zbl
[25] Yu. D. Nechipurenko, A. A. Anashkina, O. V. Matveeva, “Change of Antigenic Determinants of SARS-CoV-2 Virus S-Protein as a Possible Cause of Antibody-Dependent Enhancement of Virus Infection and Cytokine Storm”, Biophysics, 65:4 (2020), 703–709 | DOI | DOI
[26] Y. Yi, PNP. Lagniton, S. Ye, E. Li, R-H. Xu, “COVID-19: what has been learned and to be learned about the novel coronavirus disease”, Int. J. Biol. Sci, 16:10 (2020), 1753–1766 | DOI
[27] V. G. Akimkin, S. N. Kuzin, E. N. Kolosovskaya i dr., “Harakteristika epidemiologicheskoj situacii po COVID-19 v Sankt-Peterburge”, Zhurnal mikrobiologii, epidemiologii i immunobiologii, 98:5 (2021), 497–511 | DOI
[28] G. Massonis, J. R. Banga, A. F. Villaverde, “Structural identifiability and observability of compartmental models of the COVID-19 pandemic”, Annual Reviews in Control, 51 (2021), 441–459 | DOI | MR