Numerical solution of the Cauchy problem based on the basic element method
Matematičeskoe modelirovanie, Tome 35 (2023) no. 5, pp. 87-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

A fundamentally new approach to the numerical solution of the Cauchy problem for ODE based on polynomials in the form of basic elements. In contrast to the explicit methods of Runge-Kutta, Adams and others, proposed approach can solve stiff problems. The approach is based on an explicit “predictor-corrector” scheme. The calculation of the prediction at the next step is carried out using two polynomials of the fifth degree, connected by additional conditions with double reference to the right side of the equation. The error of the method is regulated by the step length $h$ and the control parameter $K$, $0$. Such a scheme is stable for calculations with extremely small steps ($h=10^{-17}$, $10^{-15}$). The fifth order of the method is confirmed by the test for the stiff problem, also by the results of an analysis of an asymptotically precise error estimate according to the Richardson scheme on a sequence of shredding grids.
Keywords: stiff Cauchy problems, basic element method, polynomial approximation and extrapolation, BEM-polynomials.
Mots-clés : explicit schemes
@article{MM_2023_35_5_a5,
     author = {N. D. Dikusar},
     title = {Numerical solution of the {Cauchy} problem based on the basic element method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {87--103},
     publisher = {mathdoc},
     volume = {35},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_5_a5/}
}
TY  - JOUR
AU  - N. D. Dikusar
TI  - Numerical solution of the Cauchy problem based on the basic element method
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 87
EP  - 103
VL  - 35
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_5_a5/
LA  - ru
ID  - MM_2023_35_5_a5
ER  - 
%0 Journal Article
%A N. D. Dikusar
%T Numerical solution of the Cauchy problem based on the basic element method
%J Matematičeskoe modelirovanie
%D 2023
%P 87-103
%V 35
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_5_a5/
%G ru
%F MM_2023_35_5_a5
N. D. Dikusar. Numerical solution of the Cauchy problem based on the basic element method. Matematičeskoe modelirovanie, Tome 35 (2023) no. 5, pp. 87-103. http://geodesic.mathdoc.fr/item/MM_2023_35_5_a5/

[1] E. Hyrer, S. Norsett, G. Wanner, Solving Ordinary differential equations. Nonstiff problems, Springer-Verlag, Heidelberg–Berlin, 1987, 512 pp. | MR | MR

[2] E. Hairer, G. Wanner, Solving Ordinary Differential Equations, v. II, Stiff and Differential-Algebraic Problems, Second Revised Edition, Springer-Verlag, 1991 | MR | MR | Zbl

[3] K. Atkinson, W. Han, D. Stewart, Numerical Solution of Ordinary Differential Equations, John Wiley Sons, Inc, Hoboken, New Jersey, 2009 | MR | Zbl

[4] E. K. Zholkovskii, A. A. Belov, N. N. Kalitkin, “Solution of stiff Cauchy problems with explicit schemes with geometrical-adaptive step selection”, Keldysh Institute preprints, 2018, 227, 20 pp.

[5] N. D. Dikusar, “The Basic Element Method”, Math. Models and Computer Simulations, 3:4 (2011), 492–507 | DOI | MR | Zbl

[6] N. D. Dikusar, Polinomialnyj prognoz na trekhtochechnykh setkakh

[7] P. L. Chebyshev, Izbrannye trudy, AN SSSR, M., 1955 | MR

[8] N. D. Dikusar, “Piecewise Polynomial Approximation of the Sixth Order with Automatic Knots Detection”, Math. Models Comput. Simul., 6:5 (2014), 509–522 | DOI | MR | Zbl

[9] N. D. Dikusar, “Higher Order Polynomial Approximation”, Math. Models Comput. Simulations, 8:2 (2016), 183–200 | DOI | MR | Zbl

[10] N. D. Dikusar, “Optimizacija reshenija v zadachakh kusochno-polinomialnoj approksimacii”, Supercomputing and Mathematical Modeling, Proc. of the XVI Inter. Conference, FSUE “RFNC-VNIIEF”, Sarov, 2017, 113–122

[11] D. Kahaner, C. Moler, S. Nash, Numerical Methods and Software, Prentice-Hall Inc, 1989 | Zbl

[12] N. N. Kalitkin, P. V. Korjakin, Chislennye metody, v 2 kn., v. 2, Metody matematicheskoj fiziki, Izdatelskij centr “Akademija”, M., 2013, 304 pp.