Explicit numerical algorithm for non-hydrostatic fluid dynamics equations based on the CABARET scheme
Matematičeskoe modelirovanie, Tome 35 (2023) no. 5, pp. 62-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article presents a non-hydrostatic model of the dynamics of a stratified slightly compressible fluid with a free-surface. An explicit scheme CABARET-NH (CABARET Non-Hydrostatic) for the numerical solution of the constructed system of differential equations in mixed Eulerian-Lagrangian coordinates based on the balance-characteristic scheme of the CABARET class is described. The well-balanced property of the numerical scheme is proved. The results of calculations of the free-surface oscillation problem are presented.
Keywords: non-hydrostatic model, Eulerian-Lagrangian coordinates, weakly compressible fluid, hyperbolic type equations, free-surface, conservative-characteristic schemes.
@article{MM_2023_35_5_a4,
     author = {V. Goloviznin and Petr Mayorov and Pavel Mayorov and A. Solovjev and N. Afanasiev},
     title = {Explicit numerical algorithm for non-hydrostatic fluid dynamics equations based on the {CABARET} scheme},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {62--86},
     publisher = {mathdoc},
     volume = {35},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_5_a4/}
}
TY  - JOUR
AU  - V. Goloviznin
AU  - Petr Mayorov
AU  - Pavel Mayorov
AU  - A. Solovjev
AU  - N. Afanasiev
TI  - Explicit numerical algorithm for non-hydrostatic fluid dynamics equations based on the CABARET scheme
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 62
EP  - 86
VL  - 35
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_5_a4/
LA  - ru
ID  - MM_2023_35_5_a4
ER  - 
%0 Journal Article
%A V. Goloviznin
%A Petr Mayorov
%A Pavel Mayorov
%A A. Solovjev
%A N. Afanasiev
%T Explicit numerical algorithm for non-hydrostatic fluid dynamics equations based on the CABARET scheme
%J Matematičeskoe modelirovanie
%D 2023
%P 62-86
%V 35
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_5_a4/
%G ru
%F MM_2023_35_5_a4
V. Goloviznin; Petr Mayorov; Pavel Mayorov; A. Solovjev; N. Afanasiev. Explicit numerical algorithm for non-hydrostatic fluid dynamics equations based on the CABARET scheme. Matematičeskoe modelirovanie, Tome 35 (2023) no. 5, pp. 62-86. http://geodesic.mathdoc.fr/item/MM_2023_35_5_a4/

[1] G. I. Marchuk, V. P. Dymnikov, V. B. Zalesnyi, Matematicheskie modeli v geofizicheskoj gidrodinamike i chislennye metody ih realizacii, Gidrometeoizdat, L., 1987, 296 pp. | MR

[2] J. Pedlosky, Geophysical fluid dynamics, Springer-Verlag, NY., 1987, 710 pp. | Zbl

[3] P. Muller, The equations of oceanic motions, University Press, Cambridge, 2006 | Zbl

[4] G. K. Vallis, Atmospheric and oceanic fluid dynamics, University Press, Cambridge, 2017 | Zbl

[5] A. Kurganov, G. Petrova, “Central-upwind schemes for two-layer shallow water equations”, SIAM Journal on Scientific Computing, 31:3 (2009), 1742–1773 | DOI | MR | Zbl

[6] V. M. Goloviznin et al, “New Numerical Algorithm for the Multi-Layer Shallow Water Equations Based on the Hyperbolic Decomposition and the CABARET Scheme”, Physical Oceanography, 26:6 (2019), 528–546 | DOI

[7] V. M. Goloviznin et al., “Validation of the low dissipation computational algorithm CABARET-MFSH for multilayer hydrostatic flows with a free surface on the lock-release experiments”, Journal of Computational Physics, 463 (2022), 111239 | DOI | MR

[8] A. Adcroft et al, “The GFDL global ocean and sea ice model OM4. 0: Model description and simulation features”, J. of Advances in Modeling Earth Systems, 11:10 (2019), 3167–3211 | DOI

[9] P. Korn, “Formulation of an unstructured grid model for global ocean dynamics”, Journal of Computational Physics, 339 (2017), 525–552 | DOI | MR | Zbl

[10] C. N. Barron et al, “Formulation, implementation and examination of vertical coordinate choices in the Global Navy Coastal Ocean Model (NCOM)”, Ocean Modelling, 11:3–4 (2006), 347–375 | DOI

[11] V. Casulli, “A semi-implicit finite difference method for non-hydrostatic, free-surface flows”, International journal for numerical methods in fluids, 30:4 (1999), 425–440 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[12] H. Yuan, C. H. Wu, “An implicit three-dimensional fully non-hydrostatic model for free-surface flows”, Inter. J. for Numerical Methods in Fluids, 46:7 (2004), 709–733 | DOI | MR | Zbl

[13] Y. Matsumura, H. Hasumi, “Brine-driven eddies under sea ice leads and their impact on the Arctic Ocean mixed layer”, J. of Physical Oceanography, 38:1 (2008), 146–163 | DOI

[14] E. D. Skyllingstad, W. D. Smyth, G. B. Crawford, “Resonant wind-driven mixing in the ocean boundary layer”, Journal of Physical Oceanography, 30:8 (2000), 1866–1890 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[15] J. Marshall et al, “A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers”, J. of Geophysical Research: Oceans, 102:C3 (1997), 5753–5766 | DOI

[16] C. Escalante, T. M. de Luna, “A general non-hydrostatic hyperbolic formulation for Boussinesq dispersive shallow flows and its numerical approximation”, Journal of Scientific Computing, 83:3 (2020), 1–37 | DOI | MR

[17] Y. Nakashima, N. Watanabe, H. Nishikawa, “Hyperbolic Navier-Stokes solver for three-dimensional flows”, 54th AIAA Aerospace Sciences Meeting, 2016, 1101

[18] N. Pinardi, A. Rosati, R. C. Pacanowski, “The sea surface pressure formulation of rigid lid models. Implications for altimetric data assimilation studies”, Journal of Marine Systems, 6:1–2 (1995), 109–119 | DOI

[19] V. A. Gushchin, V. G. Kondakov, “One approach of solving tasks in the presence of free surface using a multiprocessor computing systems”, International Conference on Large-Scale Scientific Computing, Springer, Cham, 2019, 324–331 | MR

[20] H. Yuan, C. H. Wu, “A two-dimensional vertical non-hydrostatic model with an implicit method for free-surface flows”, International Journal for Numerical Methods in Fluids, 44:8 (2004), 811–835 | DOI | MR | Zbl

[21] V. B. Zalesny, A. V. Gusev, V. V. Fomin, “Numerical Model of Nonhydro static Ocean Dynamics Based on Methods of Artificial Compressibility and Multicomponent Splitting”, Oceanology, 56:6 (2016), 876–887 | DOI | DOI

[22] G. Stelling, M. Zijlema, “An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation”, International Journal for Numerical Methods in Fluids, 43:1 (2003), 1–23 | DOI | MR | Zbl

[23] V.M. Goloviznin, M.A. Zaytsev, S.A. Karabasov, I.A. Korotkin, Novye algoritmy vychislitelnoy gidrodinamiki dlya mnogoprotsessornykh vychislitelnykh kompleksov, Mosk. Gos. Univ., M., 2013, 475 pp.

[24] V. M. Goloviznin, S. A. Karabasov, “Nelinejnaya korrekciya skhemy Kabare”, Matematicheskoe modelirovanie, 10:12 (1998), 107–123

[25] N. Afanasiev, V. Goloviznin, “A locally implicit time-reversible sonic point processing algorithm for one-dimensional shallow-water equations”, Journal of Comp. Physics, 434 (2021), 110220 | DOI | MR

[26] T. B. Benjamin, F. J. Ursell, “The stability of the plane free surface of a liquid in vertical periodic motion”, Proc. of the Royal Society of London. Ser. A. Mathematical and Physical Sci., 225:1163 (1954), 505–515 | MR | Zbl

[27] N. A. Afanasyev, P.A. Mayorov, A.V. Solovyev, V.M. Goloviznin, “Modelirovaniye dinamiki zhidkosti so svobodnoy poverkhnostyu v gravitatsionnom pole skhemoy CABARE”, Matematicheskiye zametki SVFU, 29:4 (2022), 78–95