The new CRM-like two-phase proxy-model for the process of oil field development
Matematičeskoe modelirovanie, Tome 35 (2023) no. 5, pp. 47-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

CRM models are a group of simplified mathematical models (proxy-models) based on the material balance equation, that allow solving various practical problems that arise during the development of oil fields. An important limitation of traditional CRM models, which significantly narrows the range of tasks to be solved, is the inability to account for changes in the water saturation of rocks, which limits their applicability only to periods with high water content of well products. This article presents a new author's CRM-like model that does not have this disadvantage. An algorithm for adapting such a model is also proposed. The results of numerical experiments on synthetic hydrodynamic models demonstrating better quality of solutions compared to the CRMP model are presented.
Keywords: mathematical modeling of field development, proxy-modeling, material balance model, CRM, capacitance resistive model.
@article{MM_2023_35_5_a3,
     author = {A. D. Bekman},
     title = {The new {CRM-like} two-phase proxy-model for the process of oil field development},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--61},
     publisher = {mathdoc},
     volume = {35},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_5_a3/}
}
TY  - JOUR
AU  - A. D. Bekman
TI  - The new CRM-like two-phase proxy-model for the process of oil field development
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 47
EP  - 61
VL  - 35
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_5_a3/
LA  - ru
ID  - MM_2023_35_5_a3
ER  - 
%0 Journal Article
%A A. D. Bekman
%T The new CRM-like two-phase proxy-model for the process of oil field development
%J Matematičeskoe modelirovanie
%D 2023
%P 47-61
%V 35
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_5_a3/
%G ru
%F MM_2023_35_5_a3
A. D. Bekman. The new CRM-like two-phase proxy-model for the process of oil field development. Matematičeskoe modelirovanie, Tome 35 (2023) no. 5, pp. 47-61. http://geodesic.mathdoc.fr/item/MM_2023_35_5_a3/

[1] T. A. Pospelova, S. V. Stepanov, A. V. Strekalov, S. V. Sokolov, Matematicheskoe modeliro-vanie dlia priniatiia reshenij po razrabotke mestorozhdenij, Izdatel'skij dom Nedra, M., 2021, 427 pp.

[2] T. A. Pospelova, D. V. Zelenin, A. A. Ruchkin, A. D. Bekman, “Primenenie CRM modeli dlia analiza effektivnosti sistemy zavodneniia”, Neftianaia provinciia, 2020, no. 1 (21), 97–108 | DOI

[3] M. Sayarpour, Development and Application of Capacitance-Resistive Models to Water/CO$_2$ Floods, Ph.D. Dissertation, University of Texas, Austin, TX, USA, 2008

[4] N. O. Shevtsov, S. V. Stepanov, “Development of the material balance model to account for changes in the well productivity index”, Mathematical Models Comp. Simulation, 14:5 (2022), 691–699 | DOI | DOI | MR | Zbl

[5] F. Cao, Development of a Two-Phase Flow Coupled Capacitance Resistance Model, Ph.D. Dissertation, University of Texas, Austin, TX, USA, 2014

[6] A. D. Bekman, S. V. Stepanov, A. A. Ruchkin, D. V. Zelenin, “Novyj algoritm nakhozhdeniia optimal'nogo resheniia zadachi opredeleniia koeffitsientov vzaimovliianiia skvazhin v ramkakh modeli CRM”, Vestnik Tiumenskogo gosudarstvennogo universiteta. Fiziko-ma-tematicheskoe modelirovanie. Neft', gaz, energetika, 5:3 (2019), 164–185 | DOI

[7] A. D. Bekman, D. V. Zelenin, “Ispol'zovanie rasshirennoj CRMP-modeli dlia kartirovaniia plastovogo davleniia”, Vestnik Tiumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft', gaz, energetika, 7:4 (28) (2021), 163–180 | DOI

[8] R. Brooks, T. Corey, Hydraulic Properties of Porous Media, Hydrology Papers, Colorado State University, Fort Collins, CO, USA, 1964