Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_5_a2, author = {V. Ya. Kisselevskaya-Babinina and A. A. Romanyukha and T. E. Sannikova}, title = {Mathematical model of {COVID-19} course and severity prediction}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {31--46}, publisher = {mathdoc}, volume = {35}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_5_a2/} }
TY - JOUR AU - V. Ya. Kisselevskaya-Babinina AU - A. A. Romanyukha AU - T. E. Sannikova TI - Mathematical model of COVID-19 course and severity prediction JO - Matematičeskoe modelirovanie PY - 2023 SP - 31 EP - 46 VL - 35 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_5_a2/ LA - ru ID - MM_2023_35_5_a2 ER -
%0 Journal Article %A V. Ya. Kisselevskaya-Babinina %A A. A. Romanyukha %A T. E. Sannikova %T Mathematical model of COVID-19 course and severity prediction %J Matematičeskoe modelirovanie %D 2023 %P 31-46 %V 35 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_5_a2/ %G ru %F MM_2023_35_5_a2
V. Ya. Kisselevskaya-Babinina; A. A. Romanyukha; T. E. Sannikova. Mathematical model of COVID-19 course and severity prediction. Matematičeskoe modelirovanie, Tome 35 (2023) no. 5, pp. 31-46. http://geodesic.mathdoc.fr/item/MM_2023_35_5_a2/
[1] J. Hua et al, “Invasive mechanical ventilation in COVID-19 patient management: the experience with 469 patients in Wuhan”, Critical Care, 24:1 (2020), 1–3 | DOI
[2] L. S. Menga et al, “Noninvasive respiratory support for acute respiratory failure due to COVID-19”, Current opinion in critical care, 28:1 (2022), 25 pp. | DOI
[3] M. Antonelli et al, “Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: a multi-center study”, Intensive care medicine, 27:11 (2001), 1718–1728 | DOI
[4] S. Baker, W. Xiang, I. Atkinson, “Continuous and automatic mortality risk prediction using vital signs in the intensive care unit: a hybrid neural network approach”, Sci. Reports, 10:1 (2020), 1–12
[5] P. J.H. Hulshof et al, “Taxonomic classification of planning decisions in health care: a struc-tured review of the state of the art in OR/MS”, Health systems, 1:2 (2012), 129–175 | DOI
[6] I. M. Longini Jr. et al, “Statistical analysis of the stages of HIV infection using a Markov model”, Statistics in medicine, 8:7 (1989), 831–843 | DOI | MR
[7] A. Moran et al, “Future cardiovascular disease in China: Markov model and risk factor scenario projections from the coronary heart disease policy model-China”, Circulation: Cardiovascular Quality and Outcomes, 3:3 (2010), 243–252 | DOI
[8] M. S.R. Frausto et al, “The dynamics of disease progression in sepsis: Markov modeling describing the natural history and the likely impact of effective antisepsis agents”, Clinical infectious diseases, 27:1 (1998), 185–190 | DOI
[9] L. Peelen et al, “Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit”, J. of biomedical informatics, 43:2 (2010), 273–286 | DOI
[10] C. A. King et al, “Designing and validating a Markov model for hospital-based addiction consult service impact on 12-month drug and non-drug related mortality”, PloS one, 16:9 (2021), e0256793 | DOI
[11] D. IU. Belousov i dr., “Prognozirovanie vliianiia statinov na priamye meditsinskie zatraty pri vtorichnoj profilaktike u patsientov s vysokim riskom razvitiia serdechno-sosudistykh zabolevanij”, Kachestvennaia klinicheskaia praktika, 2011, no. 1, 97–115
[12] N. D. Yushchuk i dr., “Bremia virusnykh gepatitov v Rossiiskoi Federatsii i puti ego snizheniia v dolgosrochnoi perspektive (na primere gepatita S)”, Terapevticheskii arkhiv, 85:12 (2013), 79–85
[13] A. V. Rudakova i dr., “Farmakoekonomicheskie aspekty vaktsinatsii protiv papilloma-virusnoi infektsii devochek-podrostkov v Rossiiskoi Federatsii”, Pediatricheskaia farmakologiia, 14:6 (2017), 494–500 | DOI
[14] D. Hazard et al, “Joint analysis of duration of ventilation, length of intensive care, and mortality of COVID-19 patients: a multistate approach”, BMC medical research methodology, 20:1 (2020), 1–9 | DOI
[15] V. Ia. Kiselevskaia-Babinina, K.A. Popugaev, V.A. Molodov, I.V. Kiselevskaya-Babinina, “Ispolzovanie resursov infekcionnogo koechnogo fonda v period epidemii COVID-19 v zavisimosti ot kharakteristik patsientov”, Neotlozhnaia meditsinskaia pomoshch, 12:2 (2023)
[16] M. E. Charlson et al, “A new method of classifying prognostic comorbidity in longitudinal studies: development and validation”, J. of chronic diseases, 40:5 (1987), 373–383 | DOI
[17] W. D'Hoore, C. Sicotte, C. Tilquin, “Risk adjustment in outcome assessment: the Charlson comorbidity index”, Methods of information in medicine, 32:05 (1993), 382–387 | DOI
[18] M. Charlson et al, “The Charlson comorbidity index can be used prospectively to identify patients who will incur high future costs”, PloS one, 9:12 (2014), e112479 | DOI
[19] A. V. Molochkov i dr., “Komorbidnye zabolevaniia i prognozirovanie iskhoda COVID-19: rezultaty nabliudeniia 13585 bolnykh, nakhodivshikhsia na statsionarnom lechenii v bolnitsakh Moskovskoi oblasti”, Almanakh klinich. medits., 48:S1 (2020), 1–10 | MR
[20] X. Wang et al, “Comorbid chronic diseases and acute organ injuries are strongly correlated with disease severity and mortality among COVID-19 patients: a systemic review and meta-analysis”, Research, 2020 (2020) | Zbl
[21] L. Liu et al, “A simple nomogram for predicting failure of non-invasive respiratory strategies in adults with COVID-19: a retrospective multicentre study”, The Lancet Digital Health, 3:3 (2021), e166–e174 | DOI
[22] Y. Suhov, M. Kelbert, Markov Chains: A Primer in Random Processes and their Applications, Cambridge University Press, 2008, 504 pp. | Zbl
[23] A. Agresti, Categorical data analysis, John Wiley Sons, 2003 | MR
[24] B. Ripley, W. Venables, “Package 'nnet'”, R package version, 7, no. 3–12 (2016), 700 pp.
[25] W. Venables, B. D. Ripley, Modern applied statistics with S, Fourth edition, Springer, 2002 | MR | Zbl
[26] B. Efron, R. J. Tibshirani, An introduction to the bootstrap, CRC press, 1994 | MR
[27] B. Hu et al, “Characteristics of SARS-CoV-2 and COVID-19”, Nature Reviews Microbiology, 19:3 (2021), 141–154 | DOI
[28] A. E. Ivanova, N. B. Pavlov, A. Iu. Mikhailov, “Tendentsii i regionalnye osobennosti zdorovia vzroslogo naseleniia Rossii”, Sotsialnye aspekty zdorovia naseleniia, 19:3 (2011), 25
[29] V. Yu. Semenov, “Zabolevaemost naseleniia Rossiiskoi Federatsii: geograficheskie osobennosti”, Problemy sotsialnoi gigieny, zdravookhraneniia i istorii meditsiny, 23:6 (2015), 6–9
[30] A. K. Singh et al, “Molnupiravir in COVID-19: A systematic review of literature”, Diabetes Metabolic Syndrome: Clinical Research Reviews, 15:6 (2021), 102329 | DOI | MR
[31] G. Fink et al, “Inactivated trivalent influenza vaccination is associated with lower mortality among patients with COVID-19 in Brazil”, BMJ evidence-based medicine, 26:4 (2021), 192–193 | DOI