Numerical study of the effect of artificial obstacles on the occurrence of hurricane-force wind gusts during bora
Matematičeskoe modelirovanie, Tome 35 (2023) no. 5, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the numerical solution of two-dimensional equations of gas dynamics in Euler variables with gravity the development of turbulent atmospheric processes accompanying bora winds is modeled. The parameters of the mathematical model under consideration are characteristic of the Novorossiysk bay, where wind gusts of hurricane force are observed and often leaded to catastrophic consequences. The principal possibility of erecting engineering structures that significantly reduce the intensity of wind gusts is demonstrated.
Keywords: bora winds, computational gas dynamics, gravity, turbulent shear flows.
@article{MM_2023_35_5_a0,
     author = {M. V. Abakumov},
     title = {Numerical study of the effect of artificial obstacles on the occurrence of hurricane-force wind gusts during bora},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {35},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_5_a0/}
}
TY  - JOUR
AU  - M. V. Abakumov
TI  - Numerical study of the effect of artificial obstacles on the occurrence of hurricane-force wind gusts during bora
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 3
EP  - 14
VL  - 35
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_5_a0/
LA  - ru
ID  - MM_2023_35_5_a0
ER  - 
%0 Journal Article
%A M. V. Abakumov
%T Numerical study of the effect of artificial obstacles on the occurrence of hurricane-force wind gusts during bora
%J Matematičeskoe modelirovanie
%D 2023
%P 3-14
%V 35
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_5_a0/
%G ru
%F MM_2023_35_5_a0
M. V. Abakumov. Numerical study of the effect of artificial obstacles on the occurrence of hurricane-force wind gusts during bora. Matematičeskoe modelirovanie, Tome 35 (2023) no. 5, pp. 3-14. http://geodesic.mathdoc.fr/item/MM_2023_35_5_a0/

[1] N. F. Veltishchev, V. M. Stepanenko, Mezometeorologicheskie protsessy, MGU, M., 2006, 101 pp.

[2] L. N. Gutman, F. I. Frankl, “Gidrodinamicheskaia model bory”, Doklady Akademii nauk SSSR, 130:3 (1960), 533–536

[3] R.G. Barry, Mountain weather and climate, Methuen, London, NY, 1981, 313 pp.

[4] D. R. Durran, “Downslope winds”, Encyclopedia of atmospheric sciences, Academic press, 2003, 644–650 | DOI

[5] D. R. Durran, “Mountain waves and downslope winds”, Atmospheric processes over complex terrain, American meteorological society, Boston, MA, 1990, 59–81 | DOI

[6] V. N. Kozhevnikov, Vozmushcheniia atmosfery pri obtekanii gor, Nauchnyi mir, M., 1999, 160 pp.

[7] B. Grisogono, D. Belusic, “A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind”, Tellus, 61:1 (2009), 1–16 | DOI

[8] K. S. Veselovskii, O klimate Rossii, tip. Imper. AN, SPb., 1857, 764 pp.

[9] F. F. Vrangel, Novorossiiskaia bora i ee teoriia, tip. Iu.G. Reno, Nikolaev, 1876, 17 pp.

[10] N. A. Korostelev, Novorossiiskaia bora, Zapiski AN po Fiziko-matematicheskomu otdeleniiu, 15, no. 2, tip. Imper. AN, SPb., 1904, 135 pp.

[11] A. M. Gusev (red.), Novorossiiskaia bora, Tr. Morskogo gidrofiz. in-ta, 14, Izd-vo AN SSSR, M., 1959, 140 pp.

[12] W. C. Skamarock et al, A description of the advanced research WRF version 3, UCAR/NCAR, Boulder, Colorado, USA, 2008, 113 pp.

[13] V. V. Efimov, V. S. Barabanov, “Black sea bora modeling”, Izvestiya, atmospheric and oceanic physics, 49:6 (2013), 632–641 | DOI

[14] P. A. Toropov, S. A. Myslenkov, T. E. Samsonov, “Chislennoe modelirovanie novorossiiskoi bory i sviazannogo s nei vetrovogo volneniia”, Vestnik Moskovskogo universiteta. Geografiia, 2013, no. 2, 38–46

[15] A. V. Gavrikov, A. Y. Ivanov, “Anomalously strong bora over the black sea: observations from space and numerical modeling”, Izvestiya, atmospheric and oceanic physics, 51:5 (2015), 546–556 | DOI | DOI

[16] M. V. Abakumov, A. M. Lipanov, Yu. P. Popov, “Mathematical simulation of gas dynamic flows accompanying the bora winds”, Mathematical models and computer simulations, 9:1 (2017), 1–11 | DOI | MR | Zbl

[17] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, v. 6, Fluid Mechanics, 2nd edition, Pergamon Press, Oxford, 1987, 539 pp. | MR | Zbl

[18] H. Von Helmholtz, “On discontinuous movements of fluids”, Philosophical magazine, 36 (1868), 337–346

[19] W. Kelvin, “Hydrokinetic solutions and observations”, Philosophical magazine, 42 (1871), 362–377

[20] S. P. Khromov, M. A. Petrosiants, Meteorologiia i klimatologiia, Uchebnik, Izd-vo MGU, M., 2006, 582 pp.

[21] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | Zbl

[22] S. K. Godunov, A. V. Zabrodin, G. P. Prokopov, “Raznostnaia skhema dlia dvumernykh nestatsionarnykh zadach gazovoi dinamiki i raschet obtekaniia s otoshedshei udarnoi volnoi”, Vychisl. matem. i matem. fiz., 1:6 (1961), 1020–1050 | Zbl

[23] P. L. Roe, “Characteristic-based schemes for the Euler equations”, Annual review of fluid mechanics, 18 (1986), 337–365 | DOI | MR | Zbl

[24] B. Einfeld, “On Godunov-type methods for gas dynamics”, SIAM journal on numerical analysis, 25 (1988), 294–318 | DOI | MR | Zbl

[25] S. Chakravarthy, S. Osher, A new class of high accuracy TVD schemes for hyperbolic conservation laws, AIAA paper No 85-0363, 1985, 11 pp.

[26] C.C. Lin, The theory of hydrodynamic stability, Cambridge university press, Cambridge, 1955, 153 pp. | MR | Zbl

[27] A. M. Lipanov, P. V. Rodionov, “Skhemy vysokikh poriadkov approksimatsii i ikh primenenie dlia priamogo chislennogo modelirovaniia novorossiiskoi bory”, Keldysh Institute preprints, 2018, 067, 42 pp.