Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_4_a4, author = {V. A. Gordin and D. A. Shadrin}, title = {Compact approximation of a two-dimensional boundary value problem for elliptic equations of the 2nd order with a discontinuous coefficient}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {88--119}, publisher = {mathdoc}, volume = {35}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_4_a4/} }
TY - JOUR AU - V. A. Gordin AU - D. A. Shadrin TI - Compact approximation of a two-dimensional boundary value problem for elliptic equations of the 2nd order with a discontinuous coefficient JO - Matematičeskoe modelirovanie PY - 2023 SP - 88 EP - 119 VL - 35 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_4_a4/ LA - ru ID - MM_2023_35_4_a4 ER -
%0 Journal Article %A V. A. Gordin %A D. A. Shadrin %T Compact approximation of a two-dimensional boundary value problem for elliptic equations of the 2nd order with a discontinuous coefficient %J Matematičeskoe modelirovanie %D 2023 %P 88-119 %V 35 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_4_a4/ %G ru %F MM_2023_35_4_a4
V. A. Gordin; D. A. Shadrin. Compact approximation of a two-dimensional boundary value problem for elliptic equations of the 2nd order with a discontinuous coefficient. Matematičeskoe modelirovanie, Tome 35 (2023) no. 4, pp. 88-119. http://geodesic.mathdoc.fr/item/MM_2023_35_4_a4/
[1] V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Multigrid method for elliptic equations with anisotropic discontinuous coefficients”, Comput. Math. Math. Phys., 55 (2015), 1150–1163
[2] V. M. Babich, “Skin-effect v sluchae provoda proizvolnogo poperechnogo sechenia”, Zap. Nauchn. Sem. LOMI, 128 (1982), 13–20
[3] O. Ladyzhenskaya, N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968
[4] Sh. E. Mikeladze, “O chislennom integrirovanii uravnenii ellipticheskogo i parapolicheskogo tipov”, Izv. AN SSSR. Ser. Matem., 5:1 (1941), 57–74
[5] P. H. Cowell, A. C.D. Crommelin, Investigation of the motion of Halley's comet from 1759 to 1910. Appendix to Greenwich Observations for 1909, Edinburgh, 1910, 1–84
[6] B. V. Noumerov, “A Method of Extrapolation of Perturbations”, Monthly Notices Royal Astronomical Society, 84 (1924), 592–601
[7] E. Hairer, S. P. Norsett, G. Wanner, Solving ordinary differential equations, v. I, Nonstiff problems, Springer Verlag, New York, 1987, 1993, 480 pp.
[8] V. A. Gordin, E. A. Tsymbalov, “Kompaktnaia raznostnaia skhema dlia differentsialnogo uravneniia s kusochno-postoiannym koeffitsientom”, Matematicheskoe modelirovanie, 29:12 (2017), 16–28
[9] V. A. Gordin, Kak eto poschitat?, MTsNMO, M., 2005, 280 pp.
[10] M. M. Krasnov, “Parallel algorithm for computing points on a computation front hyperplane”, Comput. Math. and Math. Phys., 55 (2015), 140–147
[11] A. A. Samarskii, E. S. Nikolaev, Numerical Methods for Grid Equations, v. II, Iterative Methods, Birkhauser Verlag, Basel-Boston-Berlin, 1989
[12] R. P. Fedorenko, “A relaxation method for solving elliptic difference equations”, USSR Computational Mathematics and Mathematical Physics, 1:4 (1962), 1092–1096
[13] R. P. Fedorenko, Vvedenie v vychislitelnuiu fiziku, Intellekt, M.–Dolgoprudnyi, 2008
[14] A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, 2009
[15] V. T. Zhukov, O. B. Feodoritova, “O razvitii parallelnyh algorithmov reshenia parabolicheskih i ellipticheskih uravnenii”, Itogi nauki i techniki. Seria sovremennaia matematika i ee prilojenia. Tematicheskii obzor, 155, 2018, 20–37