Quasi-Newton single-phase stability testing without explicit Hessian calculation
Matematičeskoe modelirovanie, Tome 35 (2023) no. 4, pp. 51-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

A robust solver for testing the single-phase stability of a multi-component fluid under isochoric-isobaric conditions is developed. The approach is based on quasi-Newton minimization of Helmholtz free energy. The solver does not need explicit Hessian calculation when used with properly scaled variables. The solver is not tied to a specific equation of state and is applicable when the derivatives are calculated using automatic differentiation. The generation of initial estimates only needs an auxiliary cubic equation of state. We analyze robustness and performance of the solver and present calculations of phase boundary for a number of mixtures using a cubic and a SAFT-type equations of state.
Keywords: phase stability test, isochoric, Helmholtz free energy, Hessian, quasi-Newton optimization.
@article{MM_2023_35_4_a2,
     author = {S. A. Zakharov and V. V. Pisarev},
     title = {Quasi-Newton single-phase stability testing without explicit {Hessian} calculation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {51--64},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_4_a2/}
}
TY  - JOUR
AU  - S. A. Zakharov
AU  - V. V. Pisarev
TI  - Quasi-Newton single-phase stability testing without explicit Hessian calculation
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 51
EP  - 64
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_4_a2/
LA  - ru
ID  - MM_2023_35_4_a2
ER  - 
%0 Journal Article
%A S. A. Zakharov
%A V. V. Pisarev
%T Quasi-Newton single-phase stability testing without explicit Hessian calculation
%J Matematičeskoe modelirovanie
%D 2023
%P 51-64
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_4_a2/
%G ru
%F MM_2023_35_4_a2
S. A. Zakharov; V. V. Pisarev. Quasi-Newton single-phase stability testing without explicit Hessian calculation. Matematičeskoe modelirovanie, Tome 35 (2023) no. 4, pp. 51-64. http://geodesic.mathdoc.fr/item/MM_2023_35_4_a2/

[1] Z. Chen Z., G. Huan, Y. Ma, Computational methods for multiphase flows in porous media, Society for Industrial and Applied Mathematics, Philadelphia, 2006, 531 pp.

[2] O. Polivka, J. Mikyska, “Compositional Modeling of Two-Phase Flow in Porous Media Using Semi-Implicit Scheme”, IAENG Internat. J. of Applied Mathematics, 45:3 (2015), 9

[3] E. V. Usov et al, “Modelling Multiphase Flows of Hydrocarbons in Gas-Condensate and Oil Wells”, Math. Models. Comput. Simul., 12 (2020), 1005–1013

[4] M. J. Assael et al, “Correlation and prediction of dense fluid transport coefficients. III. n-alkane mixtures”, Int. J. Thermophys., 13:4 (1992), 659–669

[5] F. Ciotta, J. P.M. Trusler, V. Vesovic, “Extended hard-sphere model for the viscosity of dense fluids”, Fluid Phase Equilibria, 363 (2014), 239–247

[6] A. Gerasimov, I. Alexandrov, B. Grigoriev, “Modeling and calculation of thermodynamic properties and phase equilibria of oil and gas condensate fractions based on two generalized multiparameter equations of state”, Fluid Phase Equilibria, 418 (2016), 204–223

[7] B. Grigoriev, I. Alexandrov, A. Gerasimov, “Application of multiparameter fundamental equations of state to predict the thermodynamic properties and phase equilibria of technological oil fractions”, Fuel, 215 (2018), 80–89

[8] O. Iu. Batalin, A. I. Brusilovski, M. Iu. Zakharov, Fazovye ravnovesiia v sistemakh prirodnykh uglevodorodov, Nedra, M., 1992, 272 pp.

[9] T. Jindrova, J. Mikyska, “Fast and robust algorithm for calculation of two-phase equilibria at given volume, temperature, and moles”, Fluid Phase Equilibria, 353 (2013), 101–114

[10] J. Mikyska, A. Firoozabadi, “Investigation of mixture stability at given volume, temperature, and number of moles”, Fluid Phase Equilibria, 321 (2012), 1–9

[11] J. Mikyska, A. Firoozabadi, “A new thermodynamic function for phase-splitting at constant temperature, moles, and volume”, AIChE J., 57:7 (2011), 1897–1904

[12] M. Cismondi, P. M. Ndiaye, F. W. Tavares, “A new simple and efficient flash algorithm for T-v specifications”, Fluid Phase Equilibria, 464 (2018), 32–39

[13] D. V. Nichita, M. Petitfrere, “Phase equilibrium calculations with quasi-Newton methods”, Fluid Phase Equilibria, 406 (2015), 194–208

[14] D. V. Nichita, “Fast and robust phase stability testing at isothermal-isochoric conditions”, Fluid Phase Equilibria, 447 (2017), 107–124

[15] M. Petitfrere, D. V. Nichita, “On a choice of independent variables in Newton iterations for multiphase flash calculations”, Fluid Phase Equilibria, 427 (2016), 147–151

[16] M. Petitfrere, D. V. Nichita, “A comparison of conventional and reduction approaches for phase equilibrium calculations”, Fluid Phase Equilibria, 386 (2015), 30–46

[17] M. Fathi, S. Hickel, “Rapid multi-component pase-split calculations using volume functions and reduction methods”, AIChE J., 67:6 (2021)

[18] M. Benedict, G. B. Webb, L. C. Rubin, “An Empirical Equation for Thermodynamic Propeties of Light Hydrocarbons and Their Mixtures I. Methane, Ethane, Propane and n-Butane”, The Journal of Chemical Physics, 8:4 (1940), 334–345

[19] O. Kunz, W. Wagner, “The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004”, J. Chem. Eng. Data, 57:11 (2012), 3032–3091

[20] I. Alexandrov, A. Gerasimov, B. Grigor'ev, “Generalized Fundamental Equation of State for the Normal Alkanes C5-C50”, Int. J. Thermophys., 34:10 (2013), 1865–1905

[21] J. Gross, G. Sadowski, “Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules”, Ind. Eng. Chem. Res., 40:4 (2001), 1244–1260

[22] J. Nocedal, S. J. Wright, Numerical optimization, 2nd ed., Springer, NY, 2006, 664 pp.

[23] A. I. Brusilovsky, “Mathematical Simulation of Phase Behavior of Natural Multicomponent Systems at High Pressures with an Equation of State”, SPE Reservoir Engineering, 7:01 (1992), 117–122

[24] I. Polishuk, “Standardized Critical Point-Based Numerical Solution of Statistical Association Fluid Theory Parameters: The Perturbed Chain-Statistical Association Fluid Theory Equation of State Revisited”, Ind. Eng. Chem. Res., 53:36 (2014), 14127–14141

[25] W. W. Hager, H. Zhang, “A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search”, SIAM J. Optim., 16:1 (2005), 170–192

[26] J. F. Blinn, “How to Solve a Cubic Equation, Part 5: Back to Numerics”, IEEE Comput. Graph. Appl., 27:3 (2007), 78–89

[27] V. Pisarev, C. Zakharov, CubicEoS.jl., https://github.com/vvpisarev/CubicEoS.jl

[28] V. Pisarev, C. Zakharov, Downhill.jl., https://github.com/vvpisarev/Downhill.jl

[29] V. Pisarev, C. Zakharov, CP_PC_SAFT.jl., https://github.com/vvpisarev/CP_PC_SAFT.jl

[30] J. Bezanson et al, “Julia: A Fresh Approach to Numerical Computing”, SIAM Rev, 59:1 (2017), 65–98

[31] P. Linstrom, NIST Chemistry WebBook, NIST Standard Reference Database 69, National Institute of Standards and Technology, 1997

[32] A. Chiko et al, “Comparison of CP-PC-SAFT and SAFT-VR-Mie in Predicting Phase Equilibria of Binary Systems Comprising Gases and 1-Alkyl-3-methylimidazolium Ionic Liquids”, Molecules, 26:21 (2021), 6621

[33] V. P. Voronov et al, “Phase Behavior of Methane-Pentane Mixture in Bulk and in Porous Media”, Transport in Porous Media, 52 (2003), 18