Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_4_a1, author = {V. N. Snytnikov and E. E. Peskova and O. P. Stoyanovskaya}, title = {Mathematical model of a two-temperature medium of gassolid nanoparticles with laser methane pyrolysis}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {24--50}, publisher = {mathdoc}, volume = {35}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_4_a1/} }
TY - JOUR AU - V. N. Snytnikov AU - E. E. Peskova AU - O. P. Stoyanovskaya TI - Mathematical model of a two-temperature medium of gassolid nanoparticles with laser methane pyrolysis JO - Matematičeskoe modelirovanie PY - 2023 SP - 24 EP - 50 VL - 35 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_4_a1/ LA - ru ID - MM_2023_35_4_a1 ER -
%0 Journal Article %A V. N. Snytnikov %A E. E. Peskova %A O. P. Stoyanovskaya %T Mathematical model of a two-temperature medium of gassolid nanoparticles with laser methane pyrolysis %J Matematičeskoe modelirovanie %D 2023 %P 24-50 %V 35 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_4_a1/ %G ru %F MM_2023_35_4_a1
V. N. Snytnikov; E. E. Peskova; O. P. Stoyanovskaya. Mathematical model of a two-temperature medium of gassolid nanoparticles with laser methane pyrolysis. Matematičeskoe modelirovanie, Tome 35 (2023) no. 4, pp. 24-50. http://geodesic.mathdoc.fr/item/MM_2023_35_4_a1/
[1] N. V. Kolesnichenko, N. N. Ezhova, Iu. M. Snatenkova, “Nizshie olefiny na osnove metana: poslednie dostizheniya”, Uspekhi khimii, 89:2 (2020), 191–224
[2] S. Schneider, S. Bajohr, F. Graf, T. Kolb, “State of the Art of Hydrogen Production via Pyrolysis of Natural Gas”, ChemBioEng Rev, 7:5 (2020), 150–158
[3] N. Masyuk, A. Sherin, V. N. Snytnikov, Vl. N. Snytnikov, “Effect of Infrared Laser Radiation on Gas-Phase Pyrolysis of Ethane”, J. of Anal. Appl. Pyrolysis, 134 (2018), 122–129
[4] V. N. Snytnikov, Vl. N. Snytnikov, N. S. Masiuk, T. V. Markelova, V. N. Parmon, “Stend lazernogo kataliza”, Pribory i tekhnika eksperimenta, 2021, no. 3, 129–137
[5] F. E. Marble, “Dynamics of Dusty Gases”, Ann. Rev. of Fluid Mech., 2 (1970), 397–446
[6] R. I. Nigmatulin, Dinamika mnogofaznykh sred, v. 1, Nauka, M., 1987, 464 pp.
[7] D. Gidaspov, Multiphase Flow and Fluidization, Academic Press, 1994, 467 pp.
[8] V. S. Galkin, N. K. Makashev, “O kineticheskom vyvode uravnenii gazodinamiki mnogokomponentnykh smesej legkikh i tyazhelykh chastits”, Izv. RAN. MZhG, 1994, no. 1, 180–200
[9] P. S. Epstein, “On the Resistance Experienced by Spheres in their Motion through Gases”, Phys. Rev., 23:6 (1924), 710–733
[10] G. Laibe, D. J. Price, “Dust and gas mixtures with multiple grain species a one-fluid approach”, Monthly Notices of the Royal Astronomical Society, 444:2 (2014), 1940–1956
[11] E. V. Gurenczov, A. V. Eremin, M. G. Falchenko, “Modelirovanie protsessov teploobmena lazerno-nagretykh nanochastits s okruzhaiushchei gazovoi sredoi”, Fiziko-khimicheskaia kinetika v gazovoi dinamike, 11 (2011)
[12] R. V. Zhalnin, E. E. Peskova, O. A. Stadnichenko, V. F. Tishkin, “Modelirovanie techeniia mnogokomponentnogo reagiruiushchego gaza s ispolzovaniem algoritmov vysokogo poriadka tochnosti”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompiuternye nauki, 27:4 (2017), 608–617
[13] E. E. Peskova, “Numerical modeling of subsonic axisymmetric reacting gas flows”, Journal of Physics: Conference Series, 2021, 012071
[14] E. Hairer, G. Wanner, Solving Ordinary Differential Equations, v. II, Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1996
[15] Vl. N. Snytnikov, V. N. Snytnikov, N. S. Masyuk, T. V. Markelova, “The Absorption of CO2 Laser Radiation by Ethylene in Mixtures with Methane”, J. of Quantitative Spectroscopy and Radiative Transfer, 253 (2020), 107119, 6 pp.
[16] V. V. Rusanov, “The calculation of the interaction of non-stationary shock waves and obstacles”, USSR Computational Math. and Math. Physics, 1:2 (1962), 304–320
[17] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193
[18] I. M. Gubaydullin, R. V. Zhalnin, V. F. Masyagin, E. E. Peskova, V. F. Tishkin, “Simulation of propane pyrolysis in a flow-through chemical reactor under constant external heating”, Mathematical Models Computer Simul., 13:3 (2021), 437–444
[19] A. I. Kostyukov, N. A. Zaitseva, M. G. Baronskiy, A. A. Nashivochnikov, V. N. Snytnikov, “Catalytic Activity of Laser-Synthesized CrOx/Al2O3 Nanocatalysts with Different Particle Sizes in Isobutane Dehydrogenation”, J. of Nanoparticle Res., 24:7 (2022), 144, 13 pp.
[20] V. Y. Kovalskii, S. P. Ruzankin, V. N. Snytnikov, I. L. Zilberberg, “Extremely Low Barrier Activation of Methane on Spin-Polarized Ferryl Ion [FeO]2+ at the Four-Membered Ring of Zeolite”, Molecular Catalysis, 528 (2022), 112468, 11 pp.
[21] Ch. B. Henderson, “Drag Coefficients of Spheres in Continuum and Rarefied Flows”, AIAA Journal, 14:6 (1976), 707–708
[22] G. Q. Chen, C. D. Livermore, T. P. Liu, “Hyperbolic conservation laws with stiff relaxation terms and entropy”, Communications in Pure and Applied Mathem., 47 (1994), 787–830
[23] O. P. Stoyanovskaya, F. A. Okladnikov, E. I. Vorobyov, Y. N. Pavlyuchenkov, V. V. Akimkin, “Simulations of Dynamical Gas-Dust Circumstellar Disks: Going Beyond the Epstein Regime”, Astronomy Reports, 64:2 (2020), 107–125
[24] O. Stoyanovskaya, M. Davydov, M. Arendarenko, E. Isaenko, T. Markelova, V. Snytnikov, “Fast Method to Simulate Dynamics of Two-Phase Medium with Intense Interaction Between Phases by Smoothed Particle Hydrodynamics: Gas-Dust Mixture with Polydisperse Particles, Linear Drag, One-Dimensional Tests”, J. of Comput. Phys., 430 (2021), 110035, 24 pp.
[25] O. A. Stadnichenko, V. N. Snytnikov, Vl. N. Snytnikov, N. S. Masyuk, “Mathematical modeling of ethane pyrolysis in a flow reactor with allowance for laser radiation effects”, Chemical Engineering Research and Design, 109 (2016), 405–413