Mathematical model of a two-temperature medium of gassolid nanoparticles with laser methane pyrolysis
Matematičeskoe modelirovanie, Tome 35 (2023) no. 4, pp. 24-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of a two-phase chemically active medium of gas and solid ultrafine particles in the field of laser radiation with detailed heat transfer processes between gas and particles has been created. The mathematical model is a system of NavierStokes equations in the approximation of small Mach numbers and several temperatures, which describes the dynamics of a viscous multicomponent heat-conducting medium with diffusion, chemical reactions and energy supply through laser radiation. A computational algorithm has been developed for studying chemical processes in a gas-dust medium with single-velocity dynamics of a multicomponent gas under the action of laser radiation. This mathematical model is characterized by the presence of several very different temporal and spatial scales. The computational algorithm is based on the scheme of splitting by physical processes. For a two-phase medium from a multicomponent gas and nanodispersed solid particles, theoretical studies of multidirectional processes of thermal relaxation and specific heating-cooling of the components of a two-phase medium by laser radiation, thermal effects of chemical reactions, and intrinsic radiation of particles were carried out. It is shown that laser radiation can form a separation of the particle temperature from the gas temperature and provide the activation of methane with conversion to ethylene and hydrogen. The developed numerical model will find its application in the creation of new technologies of laser thermochemistry.
Keywords: two-phase medium, heat transfer, two-temperature medium, Navier-Stokes equations, numerical model, chemical reactions, methane.
Mots-clés : nanoparticles
@article{MM_2023_35_4_a1,
     author = {V. N. Snytnikov and E. E. Peskova and O. P. Stoyanovskaya},
     title = {Mathematical model of a two-temperature medium of gassolid nanoparticles with laser methane pyrolysis},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {24--50},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_4_a1/}
}
TY  - JOUR
AU  - V. N. Snytnikov
AU  - E. E. Peskova
AU  - O. P. Stoyanovskaya
TI  - Mathematical model of a two-temperature medium of gassolid nanoparticles with laser methane pyrolysis
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 24
EP  - 50
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_4_a1/
LA  - ru
ID  - MM_2023_35_4_a1
ER  - 
%0 Journal Article
%A V. N. Snytnikov
%A E. E. Peskova
%A O. P. Stoyanovskaya
%T Mathematical model of a two-temperature medium of gassolid nanoparticles with laser methane pyrolysis
%J Matematičeskoe modelirovanie
%D 2023
%P 24-50
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_4_a1/
%G ru
%F MM_2023_35_4_a1
V. N. Snytnikov; E. E. Peskova; O. P. Stoyanovskaya. Mathematical model of a two-temperature medium of gassolid nanoparticles with laser methane pyrolysis. Matematičeskoe modelirovanie, Tome 35 (2023) no. 4, pp. 24-50. http://geodesic.mathdoc.fr/item/MM_2023_35_4_a1/

[1] N. V. Kolesnichenko, N. N. Ezhova, Iu. M. Snatenkova, “Nizshie olefiny na osnove metana: poslednie dostizheniya”, Uspekhi khimii, 89:2 (2020), 191–224

[2] S. Schneider, S. Bajohr, F. Graf, T. Kolb, “State of the Art of Hydrogen Production via Pyrolysis of Natural Gas”, ChemBioEng Rev, 7:5 (2020), 150–158

[3] N. Masyuk, A. Sherin, V. N. Snytnikov, Vl. N. Snytnikov, “Effect of Infrared Laser Radiation on Gas-Phase Pyrolysis of Ethane”, J. of Anal. Appl. Pyrolysis, 134 (2018), 122–129

[4] V. N. Snytnikov, Vl. N. Snytnikov, N. S. Masiuk, T. V. Markelova, V. N. Parmon, “Stend lazernogo kataliza”, Pribory i tekhnika eksperimenta, 2021, no. 3, 129–137

[5] F. E. Marble, “Dynamics of Dusty Gases”, Ann. Rev. of Fluid Mech., 2 (1970), 397–446

[6] R. I. Nigmatulin, Dinamika mnogofaznykh sred, v. 1, Nauka, M., 1987, 464 pp.

[7] D. Gidaspov, Multiphase Flow and Fluidization, Academic Press, 1994, 467 pp.

[8] V. S. Galkin, N. K. Makashev, “O kineticheskom vyvode uravnenii gazodinamiki mnogokomponentnykh smesej legkikh i tyazhelykh chastits”, Izv. RAN. MZhG, 1994, no. 1, 180–200

[9] P. S. Epstein, “On the Resistance Experienced by Spheres in their Motion through Gases”, Phys. Rev., 23:6 (1924), 710–733

[10] G. Laibe, D. J. Price, “Dust and gas mixtures with multiple grain species a one-fluid approach”, Monthly Notices of the Royal Astronomical Society, 444:2 (2014), 1940–1956

[11] E. V. Gurenczov, A. V. Eremin, M. G. Falchenko, “Modelirovanie protsessov teploobmena lazerno-nagretykh nanochastits s okruzhaiushchei gazovoi sredoi”, Fiziko-khimicheskaia kinetika v gazovoi dinamike, 11 (2011)

[12] R. V. Zhalnin, E. E. Peskova, O. A. Stadnichenko, V. F. Tishkin, “Modelirovanie techeniia mnogokomponentnogo reagiruiushchego gaza s ispolzovaniem algoritmov vysokogo poriadka tochnosti”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompiuternye nauki, 27:4 (2017), 608–617

[13] E. E. Peskova, “Numerical modeling of subsonic axisymmetric reacting gas flows”, Journal of Physics: Conference Series, 2021, 012071

[14] E. Hairer, G. Wanner, Solving Ordinary Differential Equations, v. II, Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1996

[15] Vl. N. Snytnikov, V. N. Snytnikov, N. S. Masyuk, T. V. Markelova, “The Absorption of CO2 Laser Radiation by Ethylene in Mixtures with Methane”, J. of Quantitative Spectroscopy and Radiative Transfer, 253 (2020), 107119, 6 pp.

[16] V. V. Rusanov, “The calculation of the interaction of non-stationary shock waves and obstacles”, USSR Computational Math. and Math. Physics, 1:2 (1962), 304–320

[17] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193

[18] I. M. Gubaydullin, R. V. Zhalnin, V. F. Masyagin, E. E. Peskova, V. F. Tishkin, “Simulation of propane pyrolysis in a flow-through chemical reactor under constant external heating”, Mathematical Models Computer Simul., 13:3 (2021), 437–444

[19] A. I. Kostyukov, N. A. Zaitseva, M. G. Baronskiy, A. A. Nashivochnikov, V. N. Snytnikov, “Catalytic Activity of Laser-Synthesized CrOx/Al2O3 Nanocatalysts with Different Particle Sizes in Isobutane Dehydrogenation”, J. of Nanoparticle Res., 24:7 (2022), 144, 13 pp.

[20] V. Y. Kovalskii, S. P. Ruzankin, V. N. Snytnikov, I. L. Zilberberg, “Extremely Low Barrier Activation of Methane on Spin-Polarized Ferryl Ion [FeO]2+ at the Four-Membered Ring of Zeolite”, Molecular Catalysis, 528 (2022), 112468, 11 pp.

[21] Ch. B. Henderson, “Drag Coefficients of Spheres in Continuum and Rarefied Flows”, AIAA Journal, 14:6 (1976), 707–708

[22] G. Q. Chen, C. D. Livermore, T. P. Liu, “Hyperbolic conservation laws with stiff relaxation terms and entropy”, Communications in Pure and Applied Mathem., 47 (1994), 787–830

[23] O. P. Stoyanovskaya, F. A. Okladnikov, E. I. Vorobyov, Y. N. Pavlyuchenkov, V. V. Akimkin, “Simulations of Dynamical Gas-Dust Circumstellar Disks: Going Beyond the Epstein Regime”, Astronomy Reports, 64:2 (2020), 107–125

[24] O. Stoyanovskaya, M. Davydov, M. Arendarenko, E. Isaenko, T. Markelova, V. Snytnikov, “Fast Method to Simulate Dynamics of Two-Phase Medium with Intense Interaction Between Phases by Smoothed Particle Hydrodynamics: Gas-Dust Mixture with Polydisperse Particles, Linear Drag, One-Dimensional Tests”, J. of Comput. Phys., 430 (2021), 110035, 24 pp.

[25] O. A. Stadnichenko, V. N. Snytnikov, Vl. N. Snytnikov, N. S. Masyuk, “Mathematical modeling of ethane pyrolysis in a flow reactor with allowance for laser radiation effects”, Chemical Engineering Research and Design, 109 (2016), 405–413