Numerical determination of the splitting of natural frequencies of an thin-walled shell with small nonaxisymmetric of the of the middle surface
Matematičeskoe modelirovanie, Tome 35 (2023) no. 3, pp. 106-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the perturbation method, the task of determining the frequency spectrum splitting of elastic thin-walled shell, the geometry of which slightly differs from the axial symmetry, is solved. A mathematical model of the shell elastic element with arbitrarily small nonaxisymmetric geometry parameter errors and a software-algorithmic complex of numerical calculation of its natural frequency splitting are developed. With the help of computer analytics the perturbed differential-matrix operators for a thin-walled shell with arbitrary small deviations from the axial symmetry of the mid-surface shape are constructed. The results of calculations of specific shell elastic elements are presented.
Keywords: thin-walled shell, nonaxisymmetric imperfections of the median surface, frequency splitting, perturbed operator, direct tensor calculus.
Mots-clés : perturbation method
@article{MM_2023_35_3_a6,
     author = {O. Naraykin and F. Sorokin and S. Kozubnyak},
     title = {Numerical determination of the splitting of natural frequencies of an thin-walled shell with small nonaxisymmetric of the of the middle surface},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {106--126},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_3_a6/}
}
TY  - JOUR
AU  - O. Naraykin
AU  - F. Sorokin
AU  - S. Kozubnyak
TI  - Numerical determination of the splitting of natural frequencies of an thin-walled shell with small nonaxisymmetric of the of the middle surface
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 106
EP  - 126
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_3_a6/
LA  - ru
ID  - MM_2023_35_3_a6
ER  - 
%0 Journal Article
%A O. Naraykin
%A F. Sorokin
%A S. Kozubnyak
%T Numerical determination of the splitting of natural frequencies of an thin-walled shell with small nonaxisymmetric of the of the middle surface
%J Matematičeskoe modelirovanie
%D 2023
%P 106-126
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_3_a6/
%G ru
%F MM_2023_35_3_a6
O. Naraykin; F. Sorokin; S. Kozubnyak. Numerical determination of the splitting of natural frequencies of an thin-walled shell with small nonaxisymmetric of the of the middle surface. Matematičeskoe modelirovanie, Tome 35 (2023) no. 3, pp. 106-126. http://geodesic.mathdoc.fr/item/MM_2023_35_3_a6/

[1] A. Jeanroy, A. Bouvet, G. Remillieux, “HRG, marine applications. Volnovoi tverdotelnyi giroskop i ego primenenie v morskom priborostroenii”, Giroskopiia i navigatsiia, 2013, no. 4 (83), 24–34

[2] Ia. I. Binder, A. E. Eliseenkov, A. S. Lysenko, V. G. Rosenzvein, V. M. Denisov, D. A. Sokolov, “Mobilnaia inklinometricheskaia stanciia na osnove micromekhanicheskikh chuvstvitelnykh elementov dlya siemki traektoriy stvolov gruppy skvazhin podzemnoi vyrabotki”, Giroskopiia i navigatsiia, 2013, no. 1, 95–106

[3] I. A. Gorenshtein, Gidrostaticheskie chastotnye datchiki pervichnoi informacii, Mashinostroenie, M., 1976, 184 pp.

[4] I. V. Merkuriev, “Vliianie neravnomernoi tolshchiny polusfericheskogo resonatora na tochnost volnovolgo tverdotelnogo giroskopa”, Giroskopiia i navigatsiia, 2005, no. 3 (50), 16–22

[5] A. Heidari, M. L. Chan, H. A. Yang, G. Jaramillo et al, “Hemispherical wineglass resonators fabricated from microcrystalline diamond”, J. Micromech. Microeng., 23:12 (2013), 125016 | DOI

[6] P. Pai, F. K. Chowdhury, C. H. Mastrangelo, M. Tabib-Azar, “MEMS-Based Hemispherical Resonator Gyroscopes”, Proceedings to the IEEE Sensors Conference (Taipei, 2012), IEEE, 1–4 | DOI

[7] P. Pai, F. K. Chowdhury, H. Pourzand, M. Tabib-Azar, “Fabrication and Testing of Hemispherical MEMS Wineglass Resonators”, MEMS, 2013 | DOI

[8] B. Luo, J. Shang, Yu. Zhang, “Hemispherical Glass Shell Resonators Fabricated Using Chemical Foaming Process”, Electronic Components and Technology Conference (ECTC), 2015 IEEE 65th. Conference Paper, 2217–2221

[9] P. S. Kovalchuk, T. S. Krasnopolskaia, “O resonansnyh iavleniiakh pri nelineinykh kolebaniiakh tsilindricheskikh obolochek s nachalnymi nesovershenstvami”, Prikladnaia mekhanika, XV:9 (1979), 100–107

[10] I. V. Korolkov, “Rasshcheplenie spektra chastot i form sobstvennykh kolebanii tsilindricheskogo resonatora”, Izvestiya vuzov. Ser. Mashinostroenie, 1977, no. 1, 24–28

[11] I. V. Korolkov, A. G. Shchepetov, “Rasshcheplenie sobstvennykh chastot tsilindricheskogo resonatora pri ego kolebaniiakh v polosti, zapolnennoi zhidkostiu”, Izvestiya vuzov. Ser. Mashinostroenie, 1979, no. 1, 19–23

[12] S.-Y. Choi, J-H. Kim, “Natural frequency split estimation for inextensional vibration of imperfect hemispherical shell”, Journal of Sound and Vibration, 330 (2011), 2094–2106 | DOI

[13] I. V. Batov, B. P. Bodunov, M. N. Danchevskaya, B. S. Lunin et al., “Pretsessiia uprugikh voln vo vrashchaushchemsia tele”, Izv. AN SSSR. MTT, 1992, no. 4, 3–6

[14] N.E Egarmin, “Dinamika neidealnoi obolochki i upravlenie ee kolebaniyami”, Izv. RAN. MTT, 1993, no. 4, 49–59

[15] V. A. Vorobiov, I. V. Merkuriev, V. V. Podalkov, “Pogreshnosti volnovogo tvegdotelnogo giroskopa pri uchete nelineinosti kolebanii resonatora”, Giroskopiia i navigatsiia, 48:1 (2005), 15–21

[16] D. S. Vakhlyarsky, A. M. Gouskov, M. A. Basarab, V. A. Matveev, “Ispolzovanie metoda konechnykh elementov sovmestno s metodom vozmushcheniy v zadache vychisleniia rasshchepleniia chastoty obolochki s defektom formy sredinnoi poverkhnosti”, Nauka i obrazovanie. Elektronnyi zhurnal, 2016, no. 5, 152–174 | DOI

[17] O. S. Naraykin, F. D. Sorokin, A. M. Gouskov, S. A. Kozubnyak, D. S. Vakhlyarsky, “Raschet rasshchepleniia sobstvennoi chastoty tsilindricheskogo resonatora tverdotelnogo volnovogo giroskopa na osnove chislennogo integrirovaniia vysokoi tochnosti”, Ingenernyi zhurnal: nauka i innovatsii, 2019, no. 5 (89) | DOI

[18] D. Vakhlyarsky, F. Sorokin, A. Gouskov, M. Basarab, B. Lunin, “Approximation method for frequency split calculation of coriolis vibrating gyroscope resonator”, Journal of Sound and Vibration, 526 (2022), 116733, 13 pp. | DOI

[19] V. L. Biderman, Mekhanika tonkostennykh konstruktsiy: Statika, Izd. 2-e, dop., LENAND, M., 2017, 496 pp.

[20] T. Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin–Heidelberg, 1995, 644 pp. | MR | MR

[21] G. I. Marchuk, Sopryzhennye uravneniia i analiz slozhnykh sistem, Nauka, M., 1992, 336 pp.

[22] L. Collatz, Eigenwertaufgaben mit technischen Anwendungen, Geest Portig, Leipzig, 1963, 503 pp. | MR

[23] I. M. Gelfand, Lektsii po lineinoi algebre, Dobrosvet, Moskovskii tsentr nepreryvnogo matematicheskogo obrazovaniya, M., 1998, 320 pp.

[24] V. A. Eremeev, L. M. Zubov, Mehanika uprugikh obolochek, Nauka, M., 2008, 280 pp.

[25] V. V. Novozhilov, K. F. Chernykh, E. I. Mikhailovskiy, Lineinaya teoriia tonkikh obolochek, Politekhnika, L., 1991, 656 pp. | MR

[26] V. V. Eliseev, Mekhanika deformiruemogo tverdogo tela, Izd-vo Politekhnicheskogo un-ta, S.-Pb., 2006, 231 pp.

[27] L. M. Zubov, Metody nelineinoi teorii uprugosti v teorii obolochek, Izdatelstvo Rostovskogo universiteta, Rostov-na-Donu, 1982, 144 pp.

[28] S. A. Kozubnyak, Razrabotka metodov rascheta rasshchepleniia spektra chastot neidealnogo uprugogo chuvstvitelnogo elementa volnovogo tverdotelnogo giroskopa, dissert. kand. tekhn. nauk, BMSTU, 2017, 156 pp.