Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_3_a6, author = {O. Naraykin and F. Sorokin and S. Kozubnyak}, title = {Numerical determination of the splitting of natural frequencies of an thin-walled shell with small nonaxisymmetric of the of the middle surface}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {106--126}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_3_a6/} }
TY - JOUR AU - O. Naraykin AU - F. Sorokin AU - S. Kozubnyak TI - Numerical determination of the splitting of natural frequencies of an thin-walled shell with small nonaxisymmetric of the of the middle surface JO - Matematičeskoe modelirovanie PY - 2023 SP - 106 EP - 126 VL - 35 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_3_a6/ LA - ru ID - MM_2023_35_3_a6 ER -
%0 Journal Article %A O. Naraykin %A F. Sorokin %A S. Kozubnyak %T Numerical determination of the splitting of natural frequencies of an thin-walled shell with small nonaxisymmetric of the of the middle surface %J Matematičeskoe modelirovanie %D 2023 %P 106-126 %V 35 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_3_a6/ %G ru %F MM_2023_35_3_a6
O. Naraykin; F. Sorokin; S. Kozubnyak. Numerical determination of the splitting of natural frequencies of an thin-walled shell with small nonaxisymmetric of the of the middle surface. Matematičeskoe modelirovanie, Tome 35 (2023) no. 3, pp. 106-126. http://geodesic.mathdoc.fr/item/MM_2023_35_3_a6/
[1] A. Jeanroy, A. Bouvet, G. Remillieux, “HRG, marine applications. Volnovoi tverdotelnyi giroskop i ego primenenie v morskom priborostroenii”, Giroskopiia i navigatsiia, 2013, no. 4 (83), 24–34
[2] Ia. I. Binder, A. E. Eliseenkov, A. S. Lysenko, V. G. Rosenzvein, V. M. Denisov, D. A. Sokolov, “Mobilnaia inklinometricheskaia stanciia na osnove micromekhanicheskikh chuvstvitelnykh elementov dlya siemki traektoriy stvolov gruppy skvazhin podzemnoi vyrabotki”, Giroskopiia i navigatsiia, 2013, no. 1, 95–106
[3] I. A. Gorenshtein, Gidrostaticheskie chastotnye datchiki pervichnoi informacii, Mashinostroenie, M., 1976, 184 pp.
[4] I. V. Merkuriev, “Vliianie neravnomernoi tolshchiny polusfericheskogo resonatora na tochnost volnovolgo tverdotelnogo giroskopa”, Giroskopiia i navigatsiia, 2005, no. 3 (50), 16–22
[5] A. Heidari, M. L. Chan, H. A. Yang, G. Jaramillo et al, “Hemispherical wineglass resonators fabricated from microcrystalline diamond”, J. Micromech. Microeng., 23:12 (2013), 125016 | DOI
[6] P. Pai, F. K. Chowdhury, C. H. Mastrangelo, M. Tabib-Azar, “MEMS-Based Hemispherical Resonator Gyroscopes”, Proceedings to the IEEE Sensors Conference (Taipei, 2012), IEEE, 1–4 | DOI
[7] P. Pai, F. K. Chowdhury, H. Pourzand, M. Tabib-Azar, “Fabrication and Testing of Hemispherical MEMS Wineglass Resonators”, MEMS, 2013 | DOI
[8] B. Luo, J. Shang, Yu. Zhang, “Hemispherical Glass Shell Resonators Fabricated Using Chemical Foaming Process”, Electronic Components and Technology Conference (ECTC), 2015 IEEE 65th. Conference Paper, 2217–2221
[9] P. S. Kovalchuk, T. S. Krasnopolskaia, “O resonansnyh iavleniiakh pri nelineinykh kolebaniiakh tsilindricheskikh obolochek s nachalnymi nesovershenstvami”, Prikladnaia mekhanika, XV:9 (1979), 100–107
[10] I. V. Korolkov, “Rasshcheplenie spektra chastot i form sobstvennykh kolebanii tsilindricheskogo resonatora”, Izvestiya vuzov. Ser. Mashinostroenie, 1977, no. 1, 24–28
[11] I. V. Korolkov, A. G. Shchepetov, “Rasshcheplenie sobstvennykh chastot tsilindricheskogo resonatora pri ego kolebaniiakh v polosti, zapolnennoi zhidkostiu”, Izvestiya vuzov. Ser. Mashinostroenie, 1979, no. 1, 19–23
[12] S.-Y. Choi, J-H. Kim, “Natural frequency split estimation for inextensional vibration of imperfect hemispherical shell”, Journal of Sound and Vibration, 330 (2011), 2094–2106 | DOI
[13] I. V. Batov, B. P. Bodunov, M. N. Danchevskaya, B. S. Lunin et al., “Pretsessiia uprugikh voln vo vrashchaushchemsia tele”, Izv. AN SSSR. MTT, 1992, no. 4, 3–6
[14] N.E Egarmin, “Dinamika neidealnoi obolochki i upravlenie ee kolebaniyami”, Izv. RAN. MTT, 1993, no. 4, 49–59
[15] V. A. Vorobiov, I. V. Merkuriev, V. V. Podalkov, “Pogreshnosti volnovogo tvegdotelnogo giroskopa pri uchete nelineinosti kolebanii resonatora”, Giroskopiia i navigatsiia, 48:1 (2005), 15–21
[16] D. S. Vakhlyarsky, A. M. Gouskov, M. A. Basarab, V. A. Matveev, “Ispolzovanie metoda konechnykh elementov sovmestno s metodom vozmushcheniy v zadache vychisleniia rasshchepleniia chastoty obolochki s defektom formy sredinnoi poverkhnosti”, Nauka i obrazovanie. Elektronnyi zhurnal, 2016, no. 5, 152–174 | DOI
[17] O. S. Naraykin, F. D. Sorokin, A. M. Gouskov, S. A. Kozubnyak, D. S. Vakhlyarsky, “Raschet rasshchepleniia sobstvennoi chastoty tsilindricheskogo resonatora tverdotelnogo volnovogo giroskopa na osnove chislennogo integrirovaniia vysokoi tochnosti”, Ingenernyi zhurnal: nauka i innovatsii, 2019, no. 5 (89) | DOI
[18] D. Vakhlyarsky, F. Sorokin, A. Gouskov, M. Basarab, B. Lunin, “Approximation method for frequency split calculation of coriolis vibrating gyroscope resonator”, Journal of Sound and Vibration, 526 (2022), 116733, 13 pp. | DOI
[19] V. L. Biderman, Mekhanika tonkostennykh konstruktsiy: Statika, Izd. 2-e, dop., LENAND, M., 2017, 496 pp.
[20] T. Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin–Heidelberg, 1995, 644 pp. | MR | MR
[21] G. I. Marchuk, Sopryzhennye uravneniia i analiz slozhnykh sistem, Nauka, M., 1992, 336 pp.
[22] L. Collatz, Eigenwertaufgaben mit technischen Anwendungen, Geest Portig, Leipzig, 1963, 503 pp. | MR
[23] I. M. Gelfand, Lektsii po lineinoi algebre, Dobrosvet, Moskovskii tsentr nepreryvnogo matematicheskogo obrazovaniya, M., 1998, 320 pp.
[24] V. A. Eremeev, L. M. Zubov, Mehanika uprugikh obolochek, Nauka, M., 2008, 280 pp.
[25] V. V. Novozhilov, K. F. Chernykh, E. I. Mikhailovskiy, Lineinaya teoriia tonkikh obolochek, Politekhnika, L., 1991, 656 pp. | MR
[26] V. V. Eliseev, Mekhanika deformiruemogo tverdogo tela, Izd-vo Politekhnicheskogo un-ta, S.-Pb., 2006, 231 pp.
[27] L. M. Zubov, Metody nelineinoi teorii uprugosti v teorii obolochek, Izdatelstvo Rostovskogo universiteta, Rostov-na-Donu, 1982, 144 pp.
[28] S. A. Kozubnyak, Razrabotka metodov rascheta rasshchepleniia spektra chastot neidealnogo uprugogo chuvstvitelnogo elementa volnovogo tverdotelnogo giroskopa, dissert. kand. tekhn. nauk, BMSTU, 2017, 156 pp.