Numerical experiments with the NEMO ocean circulation model and the assimilation of observational data from ARGO
Matematičeskoe modelirovanie, Tome 35 (2023) no. 3, pp. 93-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the spatiotemporal variability of the characteristics of the ocean circulation model Nucleus for European Modeling of the Ocean (NEMO) with data assimilation in conjunction with the Generalized Kalman filtering (GKF) method, previously developed by the authors. In the present work, numerical experiments were carried out with the global version of the NEMO model on the grid ORCA1 and using a principally new approach for determining the key parameters of the GKF method. Simulation was carried out on a selected time interval of 1 month of the spatiotemporal variability of ocean characteristics created by the NEMO model, both using the proposed data assimilation method with the archive of observational data from Argo drifters at different horizons, and without assimilation. The results of numerical experiments are analyzed.
Keywords: ocean modeling, NEMO model, generalized Kalman filter, Argo drifter data.
Mots-clés : observational data assimilation
@article{MM_2023_35_3_a5,
     author = {K. P. Belyaev and A. A. Kuleshov and Yu. D. Resnyanskii and I. N. Smirnov and R. Yu. Fadeev},
     title = {Numerical experiments with the {NEMO} ocean circulation model and the assimilation of observational data from {ARGO}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {93--105},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_3_a5/}
}
TY  - JOUR
AU  - K. P. Belyaev
AU  - A. A. Kuleshov
AU  - Yu. D. Resnyanskii
AU  - I. N. Smirnov
AU  - R. Yu. Fadeev
TI  - Numerical experiments with the NEMO ocean circulation model and the assimilation of observational data from ARGO
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 93
EP  - 105
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_3_a5/
LA  - ru
ID  - MM_2023_35_3_a5
ER  - 
%0 Journal Article
%A K. P. Belyaev
%A A. A. Kuleshov
%A Yu. D. Resnyanskii
%A I. N. Smirnov
%A R. Yu. Fadeev
%T Numerical experiments with the NEMO ocean circulation model and the assimilation of observational data from ARGO
%J Matematičeskoe modelirovanie
%D 2023
%P 93-105
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_3_a5/
%G ru
%F MM_2023_35_3_a5
K. P. Belyaev; A. A. Kuleshov; Yu. D. Resnyanskii; I. N. Smirnov; R. Yu. Fadeev. Numerical experiments with the NEMO ocean circulation model and the assimilation of observational data from ARGO. Matematičeskoe modelirovanie, Tome 35 (2023) no. 3, pp. 93-105. http://geodesic.mathdoc.fr/item/MM_2023_35_3_a5/

[1] K. P. Belyaev, V. N. Solovev, “O chislennykh raschetakh uravneniy termogidrodinamiki, modeliruyushchikh okeanicheskiye techeniya v rayone subpolyarnogo fronta Severnoy Atlantiki”, Matematicheskoe modelirovanie, 8:11 (1996), 87–95

[2] G. I. Marchuk, V. B. Zalesny, “Modeling of the World Ocean circulation with the four-dimensional assimilation of temperature and salinity fields”, Izvestiya, Atmospheric and Oceanic Physics, 48:1 (2012), 15–29 | DOI | MR

[3] R. Tardiff, G. J. Hakim, C. Snider, “Coupled atmosphere-ocean assimilation experiment with a low-order climate model”, Climate Dynamics, 43 (2014), 1631–1643 | DOI

[4] Arkhiv okeanograficheskikh dannykh nablyudenii proekta Argo, https://argo.ucsd.edu/data

[5] F. P. Tuchen, P. Brandt, J. F. Lübbecke, R. Hummels, “Transports and pathways of the tropical AMOC return flow from Argo Data and shipboard velocity measurements”, Journal of Geophysical Research: Oceans, 127:2 (2022), e2021JC018115 | DOI

[6] K. Belyaev, A. Kuleshov, I. Smirnov, C. A.S. Tanajura, “Generalized Kalman Filter and Ensemble Optimal Interpolation, their comparison and application to the Hybrid Coordinate Ocean Model”, Mathematics, 9 (2021), 2371 | DOI

[7] K. Belyaev, A. Kuleshov, N. Tuchkova, C. A.S. Tanajura, “An optimal data assimilation method and its application to the numerical simulation of the ocean dynamics”, Mathematical and Computer Modelling of Dynamical Systems, 24:1 (2018), 12–25 | DOI | MR

[8] K. P. Belyaev, A. A. Kuleshov, I. N. Smirnov, C. A.S. Tanajura, “Comparison of data assimilation methods into hydrodynamic models of ocean circulation”, Mathematical Models and Computer Simulations, 11:4 (2019), 564–574 | DOI | MR

[9] K. P. Belyaev, A. A. Kuleshov, I. N. Smirnov, “Spatial-temporal variability of the calculated characteristics of the ocean in the Arctic Zone of Russia by using the NEMO model with altimetry data assimilation”, J. of Marine Science and Engineering, 8 (2020), 753 | DOI

[10] K. P. Belyaev, A. A. Kuleshov, I. N. Smirnov, “Numerical modeling of ocean dynamics using the NEMO model with data assimilation using a Generalized Kalman Filter”, Moscow University Computational Mathematics and Cybernetics, 46:3 (2022), 111–116 | DOI | MR

[11] G. Madec and the NEMO team, NEMO ocean engine, Note du Pole de modélisation de l'Institut Pierre-Simon Laplace, No 27, 2016

[12] R. Dussin, B. Barnier, L. Brodeau, J. M. Molines, The Making of the DRAKKAR Forcing Set DFS5. DRAKKAR, MyOcean Report 01-04-16, April 2016, 34 pp. https://www.drakkar-ocean.eu/publications/reports/report_DFS5v3_April2016.pdf

[13] V. N. Stepanov, Yu. D. Resnyanskii, B. S. Strukov, A. A. Zelenko, “Large-scale ocean circulation and ice cover characteristics derived from numerical experiments with the NEMO Model”, Russian Meteorology and Hydrology, 44:1 (2019), 33–44 | DOI

[14] M.A. Tolstykh, E.M. Volodin, S.V. Kostrykin, R.Y. Fadeev, V.V. Shashkin et al., “Development of the multiscale version of the SL-AV global atmosphere model”, Russian Meteorology and Hydrology, 40:6 (2015), 374–382 | DOI

[15] R. Y. Fadeev, M. A. Tolstykh, E. M. Volodin, “Climate Version of the SLAV Global Atmospheric Model: development and preliminary results”, Russian Meteorology and Hydrology, 44:1 (2019), 13–22 | DOI