Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_3_a4, author = {V. M. Goloviznin and Pavel A. Mayorov and Petr A. Mayorov and A. V. Solovjev}, title = {Numerical modelling of three-dimensional variable-density flows by the multilayer hydrostatic model based on the {CABARET} scheme}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {79--92}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_3_a4/} }
TY - JOUR AU - V. M. Goloviznin AU - Pavel A. Mayorov AU - Petr A. Mayorov AU - A. V. Solovjev TI - Numerical modelling of three-dimensional variable-density flows by the multilayer hydrostatic model based on the CABARET scheme JO - Matematičeskoe modelirovanie PY - 2023 SP - 79 EP - 92 VL - 35 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_3_a4/ LA - ru ID - MM_2023_35_3_a4 ER -
%0 Journal Article %A V. M. Goloviznin %A Pavel A. Mayorov %A Petr A. Mayorov %A A. V. Solovjev %T Numerical modelling of three-dimensional variable-density flows by the multilayer hydrostatic model based on the CABARET scheme %J Matematičeskoe modelirovanie %D 2023 %P 79-92 %V 35 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_3_a4/ %G ru %F MM_2023_35_3_a4
V. M. Goloviznin; Pavel A. Mayorov; Petr A. Mayorov; A. V. Solovjev. Numerical modelling of three-dimensional variable-density flows by the multilayer hydrostatic model based on the CABARET scheme. Matematičeskoe modelirovanie, Tome 35 (2023) no. 3, pp. 79-92. http://geodesic.mathdoc.fr/item/MM_2023_35_3_a4/
[1] V. M. Goloviznin, A. Maiorov Pavel, A. Maiorov Petr, A. V. Solovjov, “New Numerical Algorithm for the Multi-Layer Shallow Water Equations Based on the Hyperbolic Decomposition and the CABARET Scheme”, Physical Oceanography, 26:6 (2019), 528–546 | DOI
[2] S. Karabasov, V. Goloviznin, “Compact Accurately Boundary-Adjusting High-Resolution Technique for fluid dynamics”, J. of Computational Physics, 228 (2009), 7426–7451 | DOI | MR
[3] J. E. Simpson, Gravity currents: In the environment and the laboratory, University press, Cambridge, 1999
[4] H. E. Huppert, “Gravity currents: a personal perspective”, J. of Fluid Mech., 554 (2006), 299–322 | DOI | MR
[5] C. Gladstone et al, “An experimental investigation of density-stratified inertial gravity currents”, Sedimentology, 51:4 (2004), 767–789 | DOI
[6] B. R. Sutherland et al, “Particle-bearing currents in uniform density and two-layer fluids”, Physical Review Fluids, 3:2 (2018), 023801 | DOI
[7] L. J. Marleau, M. R. Flynn, B. R. Sutherland, “Gravity currents propagating up a slope in a two-layer fluid”, Physics of Fluids, 27:3 (2015), 036601 | DOI
[8] M. Ungarish, T. Zemach, “On the slumping of high Reynolds number gravity currents in two-dimensional and axisymmetric configurations”, European J. of Mechanics-B/Fluids, 24:1 (2005), 71–90 | DOI | MR
[9] V. M. Goloviznin et al, “Validation of the low dissipation computational algorithm CABARET-MFSH for multilayer hydrostatic flows with a free surface on the lock-release experiments”, Journal of Computational Physics, 463 (2022), 111239 | DOI | MR
[10] R. Inghilesi et al, “Axisymmetric three-dimensional gravity currents generated by lock exchange”, Journal of Fluid Mechanics, 851 (2018), 507–544 | DOI | MR
[11] M. A. Hallworth, H. E. Huppert, M. Ungarish, “Axisymmetric gravity currents in a rotating system: experimental and numerical investigations”, J. of Fluid Mech., 447 (2001), 1–29 | DOI
[12] M. La Rocca et al, “Experimental and numerical simulation of three-dimensional gravity currents on smooth and rough bottom”, Physics of Fluids, 20:10 (2008), 106603 | DOI
[13] V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, I. A. Korotkin, New CFD Algo-rithms for Multiprocessor Computer Systems, Moscow State University Press, M., 2013
[14] F. G. Serchi et al, “A numerical study of the triggering mechanism of a lock-release density current”, European Journal of Mechanics-B/Fluids, 33 (2012), 25–39 | DOI