Numerical analysis of water purification processes in closed loop systems
Matematičeskoe modelirovanie, Tome 35 (2023) no. 3, pp. 59-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to the development of a numerical approach to modeling the stage of "fine" filtration of the aquatic environment, following after passing of water through mechanical filters. At this stage of purification, the aquatic environment is subjected to electromagnetic or thermal effects. For the analysis of cleaning processes, mathematical models of fluid flow are proposed, taking into account thermal effects, the evolution of pollutant concentration with consideration of developed convection-diffusion processes in the presence of a quasi-static electric field. To describe the flow of an aqueous medium containing particles of solid fine impurities, a quasi-hydrodynamic model is used, supplemented by the equations of convection-diffusion-reaction. The numerical implementation of the model in the case of three-dimensional Cartesian geometry is based on the finite volume method on irregular tetrahedral and prismatic meshes and is focused on the use of parallel computing. As examples of the use of the developed technology of computer modeling, the problems of electromagnetic cleaning of the aquatic environment and pollution of the electric heating element are considered. In the first task, the dependence of the pollutant concentration on time is calculated. It demonstrates the cleaning effect and allows us to estimate degree of cleaning depending on the parameters of the electric field. In the second task, the process of scale formation and subsequent regeneration of the heating element is studied. The calculations performed show how the heating element is contaminated and how it is cleaned under the influence of hydrochloric acid. These data make it possible to refine the parameters of perspective closed-cycle plants, in which cycles of medium heating and regeneration of heating elements alternate.
Keywords: electrophysical technology, calcium carbonate precipitation, water purification, mathematical modelling.
Mots-clés : quasi-hydrodynamic model
@article{MM_2023_35_3_a3,
     author = {T. A. Kudryashova and S. V. Polyakov and N. I. Tarasov},
     title = {Numerical analysis of water purification processes in closed loop systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {59--78},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_3_a3/}
}
TY  - JOUR
AU  - T. A. Kudryashova
AU  - S. V. Polyakov
AU  - N. I. Tarasov
TI  - Numerical analysis of water purification processes in closed loop systems
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 59
EP  - 78
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_3_a3/
LA  - ru
ID  - MM_2023_35_3_a3
ER  - 
%0 Journal Article
%A T. A. Kudryashova
%A S. V. Polyakov
%A N. I. Tarasov
%T Numerical analysis of water purification processes in closed loop systems
%J Matematičeskoe modelirovanie
%D 2023
%P 59-78
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_3_a3/
%G ru
%F MM_2023_35_3_a3
T. A. Kudryashova; S. V. Polyakov; N. I. Tarasov. Numerical analysis of water purification processes in closed loop systems. Matematičeskoe modelirovanie, Tome 35 (2023) no. 3, pp. 59-78. http://geodesic.mathdoc.fr/item/MM_2023_35_3_a3/

[1] K. Yang, J. LeJeune, D. Alsdorf, B. Lu, C. K. Shum, S. Liang, “Global distribution of out-breaks of water-associated infectious diseases”, PLoS Negl Trop Dis., 6:2 (2012), e1483, 9 pp. | DOI

[2] D. N. Magana-Arachchi, R. P. Wanigatunge, “Ubiquitous waterborne pathogens”, Waterborne Pathogens, Epub, 2020, 15–42 | DOI

[3] M. Iaccarino, “Water, Population Growth and Contagious Diseases”, Water, 11:2 (2019), 386, 14 pp. | DOI

[4] High Population Density Is Greatest Risk Factor for Water-linked Diseases, Ohio State Research and Innovation Communications https://news.osu.edu/high-population-density-is-greatest-risk-factor-for-water-linked-diseases-ohio-state-research-and-innovation-communications/

[5] V. I. Shvets, A. M. Yurkevich, O. V. Mosin, D. A. Skladnev, “Preparation of deuterated inosine suitable for biomedical application”, J. of Medical Sciences, 8:4 (1995), 231–232

[6] A. Szkatula, M. Balanda, M. Kopec, “Magnetic treatment of industrial water. Silica activation”, The European Physical Journal Applied Physics, 18:1 (2002), 41–49 | DOI

[7] Zh. Jia, K. Peng, Ya. Li, R. Zhu, “Preparation and application of novel magnetically separable $\gamma$-Fe$_2$O$_3$/activated carbon sphere adsorbent”, Materials Science and Engineering: B, 176:11 (2011), 861–865 | DOI

[8] F. Alimi, M. M. Tlili, M. Ben Amor, G. Maurin, C. Gabrielli, “Effect of magnetic water treatment on calcium carbonate precipitation: Influence of the pipe material”, Chemical Engineering and Processing: Process Intensification, 48:8 (2009), 1327–1332 | DOI

[9] J. M.D. Coey, S. Cass, “Magnetic Water Treatment”, Journal of Magnetism and Magnetic Materials, 209:1-3 (2000), 71–74 | DOI

[10] R. M. Crooks, K. N. Knust, M. R. Stanley, F. J. Carrillo, D. Hlushkou, U. Tallarek, “Electro-chemically mediated desalination”, Proc. of 18th Inter. Conf. on Miniaturized Systems for Chemistry and Life Sciences, 2014, 156–159

[11] K. N. Knust, D. Hlushkou, R. K. Anand, U. Tallarek, R. M. Crooks, “Electrochemically Mediated Seawater Desalination”, Angew. Chem. Int. Ed., 52:31 (2013), 8107–8110 | DOI

[12] W. Salameh, J. Faraj, E. Harika, R. Murr, M. Khaled, “On the Optimization of Electrical Water Heaters: Modelling Simulations and Experimentation”, Energies, 14:13 (2021), 3912, 12 pp. | DOI

[13] P. A. Hohne, K. Kusakana, B. P. Numbi, “A review of water heating technologies: An application to the South African context”, Energy Reports, 5 (2019), 1–19 | DOI

[14] D. Dobersek, D. Goricanec, “Influence of Water Scale on Thermal Flow Losses of Domestic Appliances”, Int. J. Math. Models Methods Appl. Sci., 1:2 (2007), 55–61

[15] T. G. Elizarova, I. S. Kalachinskaya, A. V. Klyuchnikova, Yu. V. Sheretov, “Application of Quasi-Hydrodynamic Equations in the Modeling of Low-Prandtl Thermal Convection”, Comp. Math. Math. Phys., 38:10 (1998), 1662–1671 | MR

[16] B. N. Chetverushkin, Kinetic schemes and quasi-gasdynamic system of equations, CIMNE, Barcelona, 2008, 298 pp.

[17] T. G. Elizarova, Quasi-gas dynamic equations, Springer-Verlag, NY–Berlin–Heidelberg, 2009, 286 pp. | MR

[18] Iu. V. Sheretov, Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii, NITs “Reguliarnaia i khaoticheskaia dinamika”, M.–Izhevsk, 2009, 400 pp.

[19] D. A. Ryazanov, “Quasi-Hydrodynamic Approach for Simulating Internal Wave Attractors”, Math. Models Comput. Simul., 14:4 (2022), 547–558 | DOI | MR

[20] A. A. Samarskii, A. V. Koldoba, Iu. A. Poveshchenko, V. F. Tishkin, A. P. Favorskii, Raznostnye skhemy na nereguliarnykh setkakh, ZAO «Kriterii», Minsk, 1996, 273 pp.

[21] V. P. Ilin, Metody konechnykh raznostei i konechnykh obiemov dlia ellipticheskikh uravnenii, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2000, 345 pp.

[22] R. Eymard, T. R. Gallouet, R. Herbin, “The finite volume method”, Handbook of Numerical Analysis, v. 7, Elsevier, 2000, 713–1020 | MR

[23] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002, 558 pp. | MR

[24] B. Stroustrup, The C++ Programming Language, 4th. ed., Addison-Wesley Professional, 2013, 1368 pp.

[25] Open MPI: Open Source High Performance Computing, https://www.open-mpi.org/

[26] Specifications OpenMP, https://www.openmp.org/specifications/

[27] N. I. Tarasov, S. V. Polyakov, Yu. N. Karamzin, T. A. Kudryashova, V. O. Podryga, D. V. Puzyrkov, “Incompressible viscous flow simulation using the quasi-hydrodynamic equations system”, Math. Models Comput. Simul., 12:4 (2020), 553–560 | DOI | MR

[28] S. Sankaranarayanan, N. J. Shankar, H. F. Cheong, “Three-dimensional finite difference model for transport of conservative pollutants”, Ocean Eng., 25:6 (1998), 425–442 | DOI

[29] K. N. Knust, D. Hlushkou, R. K. Anand, U. Tallarek, R. M. Crooks, “Electrochemically Mediated Seawater Desalination”, Angew. Chem. Int. Ed., 52:31 (2013), 8107–8110 | DOI

[30] N. I. Tarasov, T. A. Kudryashova, S. V. Polyakov, “Modeling Formation and Removal of Limescale in Water Treatment Systems”, Doklady Mathematics, 106:1 (2022), 279–285 | DOI | MR

[31] A. A. Fomin, L. N. Fomina, “Numerical solution of the heat transfer problem in a short channel with backward-facing step”, Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 27:3 (2017), 431–449 | MR