Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_3_a1, author = {D. S. Roldugin}, title = {Extensive numerical simulation of a magnetically actuated satellite rotation around the {Sun} direction with {Sun} sensors data only}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {20--34}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_3_a1/} }
TY - JOUR AU - D. S. Roldugin TI - Extensive numerical simulation of a magnetically actuated satellite rotation around the Sun direction with Sun sensors data only JO - Matematičeskoe modelirovanie PY - 2023 SP - 20 EP - 34 VL - 35 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_3_a1/ LA - ru ID - MM_2023_35_3_a1 ER -
%0 Journal Article %A D. S. Roldugin %T Extensive numerical simulation of a magnetically actuated satellite rotation around the Sun direction with Sun sensors data only %J Matematičeskoe modelirovanie %D 2023 %P 20-34 %V 35 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_3_a1/ %G ru %F MM_2023_35_3_a1
D. S. Roldugin. Extensive numerical simulation of a magnetically actuated satellite rotation around the Sun direction with Sun sensors data only. Matematičeskoe modelirovanie, Tome 35 (2023) no. 3, pp. 20-34. http://geodesic.mathdoc.fr/item/MM_2023_35_3_a1/
[1] P. C. Hughes, Spacecraft attitude dynamics, Dover publications, New York, 2004, 570 pp.
[2] G. Avanzini, E. L. de Angelis, F. Giulietti, “Spin-axis pointing of a magnetically actuated spacecraft”, Acta Astronautica, 94:1 (2014), 493–501 | DOI
[3] C. Chasset et al, “3-axis magnetic control with multiple attitude profile capabilities in the PRISMA mission”, 57th Int. Astronautical Congress (Valencia, 2006), IAC-06-C1.2.3
[4] A. de Ruiter, “A fault-tolerant magnetic spin stabilizing controller for the JC2Sat-FF mission”, Acta Astronautica, 68:1-2 (2011), 160–171 | DOI
[5] H. You, Y. Jan, “Sun Pointing Attitude Control with Magnetic Torquers Only”, 57th International Astronautical Congress (2006), IAC-06-C1.2.01
[6] J. Kim, K. Worrall, “Sun tracking controller for UKube-1 using magnetic torquer only”, IFAC Proceeding Volumes, 46:19 (2013), 541–546 | DOI
[7] A. I. Ignatov, V. V. Sazonov, “Stabilization of the Solar Orientation Mode of an Artificial Earth Satellite by an Electromagnetic Control System”, Cosmic Research, 56:5 (2018), 388–399 | DOI
[8] A. Colagrossi, M. Lavagna, “A Spacecraft Attitude Determination and Control Algorithm for Solar Arrays Pointing Leveraging Sun Angle and Angular Rates Measurements”, Algorithms, 15:2 (2022), 29 | DOI
[9] J. Cubas, A. Farrahi, S. Pindado, “Magnetic Attitude Control for Satellites in Polar or Sun-Synchronous Orbits”, J. of Guidance Control and Dynamics, 38:10 (2015), 1947–1958 | DOI
[10] A. C. Stickler, K. T. Alfriend, “Elementary Magnetic Attitude Control System”, Journal of Spacecraft and Rockets, 13:5 (1976), 282–287 | DOI
[11] S. O. Karpenko et al, “One-axis attitude of arbitrary satellite using magnetorquers only”, Cosmic Research, 51:6 (2013), 478–484 | DOI
[12] L.M. Zelenyi et al., “The academic Chibis-M microsatellite”, Cosmic Research, 52:2 (2014), 87–98 | DOI | MR
[13] M. Y. Ovchinnikov et al, “New one-axis one-sensor magnetic attitude control theoretical and in-flight performance”, Acta Astronautica, 105:1 (2014), 12–16 | DOI
[14] D. S. Roldugin, S. S. Tkachev, M. Y. Ovchinnikov, “Satellite Angular Motion under the Action of SDOT Magnetic One Axis Sun Acquisition Algorithm”, Cosmic Research, 59:6 (2021), 529–536 | DOI
[15] P. Alken et al, “International Geomagnetic Reference Field: the thirteenth generation”, Earth, Planets and Space, 73:1 (2021), 49 | DOI
[16] D. Roldugin, S. Tkachev, M. Ovchinnikov, “Asymptotic Motion of a Satellite under the Action of Sdot Magnetic Attitude Control”, Aerospace, 9:11 (2022), 639 | DOI