Extensive numerical simulation of a magnetically actuated satellite rotation around the Sun direction with Sun sensors data only
Matematičeskoe modelirovanie, Tome 35 (2023) no. 3, pp. 20-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical simulation of different motion scenarios of a magnetically actuated satellite stabilizing towards the Sun is performed. The satellite is equipped with Sun sensors as the only attitude information source. Control algorithms are derived to achieve unambiguous rotating stabilization in the Sun direction despite the inability of this rotation identification with Sun sensors. Extensive numerical simulation of the satellite motion with different orbit configurations and inertia distribution justifies algorithm applicability and reveals its performance characteristics.
Keywords: angular motion, magnetic attitude control, one-axis stabilization, Sdot, Sun sensor.
@article{MM_2023_35_3_a1,
     author = {D. S. Roldugin},
     title = {Extensive numerical simulation of a magnetically actuated satellite rotation around the {Sun} direction with {Sun} sensors data only},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {20--34},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_3_a1/}
}
TY  - JOUR
AU  - D. S. Roldugin
TI  - Extensive numerical simulation of a magnetically actuated satellite rotation around the Sun direction with Sun sensors data only
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 20
EP  - 34
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_3_a1/
LA  - ru
ID  - MM_2023_35_3_a1
ER  - 
%0 Journal Article
%A D. S. Roldugin
%T Extensive numerical simulation of a magnetically actuated satellite rotation around the Sun direction with Sun sensors data only
%J Matematičeskoe modelirovanie
%D 2023
%P 20-34
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_3_a1/
%G ru
%F MM_2023_35_3_a1
D. S. Roldugin. Extensive numerical simulation of a magnetically actuated satellite rotation around the Sun direction with Sun sensors data only. Matematičeskoe modelirovanie, Tome 35 (2023) no. 3, pp. 20-34. http://geodesic.mathdoc.fr/item/MM_2023_35_3_a1/

[1] P. C. Hughes, Spacecraft attitude dynamics, Dover publications, New York, 2004, 570 pp.

[2] G. Avanzini, E. L. de Angelis, F. Giulietti, “Spin-axis pointing of a magnetically actuated spacecraft”, Acta Astronautica, 94:1 (2014), 493–501 | DOI

[3] C. Chasset et al, “3-axis magnetic control with multiple attitude profile capabilities in the PRISMA mission”, 57th Int. Astronautical Congress (Valencia, 2006), IAC-06-C1.2.3

[4] A. de Ruiter, “A fault-tolerant magnetic spin stabilizing controller for the JC2Sat-FF mission”, Acta Astronautica, 68:1-2 (2011), 160–171 | DOI

[5] H. You, Y. Jan, “Sun Pointing Attitude Control with Magnetic Torquers Only”, 57th International Astronautical Congress (2006), IAC-06-C1.2.01

[6] J. Kim, K. Worrall, “Sun tracking controller for UKube-1 using magnetic torquer only”, IFAC Proceeding Volumes, 46:19 (2013), 541–546 | DOI

[7] A. I. Ignatov, V. V. Sazonov, “Stabilization of the Solar Orientation Mode of an Artificial Earth Satellite by an Electromagnetic Control System”, Cosmic Research, 56:5 (2018), 388–399 | DOI

[8] A. Colagrossi, M. Lavagna, “A Spacecraft Attitude Determination and Control Algorithm for Solar Arrays Pointing Leveraging Sun Angle and Angular Rates Measurements”, Algorithms, 15:2 (2022), 29 | DOI

[9] J. Cubas, A. Farrahi, S. Pindado, “Magnetic Attitude Control for Satellites in Polar or Sun-Synchronous Orbits”, J. of Guidance Control and Dynamics, 38:10 (2015), 1947–1958 | DOI

[10] A. C. Stickler, K. T. Alfriend, “Elementary Magnetic Attitude Control System”, Journal of Spacecraft and Rockets, 13:5 (1976), 282–287 | DOI

[11] S. O. Karpenko et al, “One-axis attitude of arbitrary satellite using magnetorquers only”, Cosmic Research, 51:6 (2013), 478–484 | DOI

[12] L.M. Zelenyi et al., “The academic Chibis-M microsatellite”, Cosmic Research, 52:2 (2014), 87–98 | DOI | MR

[13] M. Y. Ovchinnikov et al, “New one-axis one-sensor magnetic attitude control theoretical and in-flight performance”, Acta Astronautica, 105:1 (2014), 12–16 | DOI

[14] D. S. Roldugin, S. S. Tkachev, M. Y. Ovchinnikov, “Satellite Angular Motion under the Action of SDOT Magnetic One Axis Sun Acquisition Algorithm”, Cosmic Research, 59:6 (2021), 529–536 | DOI

[15] P. Alken et al, “International Geomagnetic Reference Field: the thirteenth generation”, Earth, Planets and Space, 73:1 (2021), 49 | DOI

[16] D. Roldugin, S. Tkachev, M. Ovchinnikov, “Asymptotic Motion of a Satellite under the Action of Sdot Magnetic Attitude Control”, Aerospace, 9:11 (2022), 639 | DOI