Entropic regularization of the discontinuous Galerkin method for two-dimensional Euler equations in triangulated domains
Matematičeskoe modelirovanie, Tome 35 (2023) no. 3, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

An entropic regularization of the discontinuous Galerkin method in conservative variables is constructed for the two-dimensional Euler equations in domains divided into non-regular triangular cells. Based on the use of local orthogonal linear basis functions in a triangular cell, a new slope limiter is proposed. In order to ensure the fulfillment of the discrete analogue of the entropic inequality in a triangular cell, a special slope limiter is constructed.
Mots-clés : Euler equations
Keywords: the discontinuous Galerkin method, conservation laws, slope limiter, entropic inequality.
@article{MM_2023_35_3_a0,
     author = {Yu. A. Kriksin and V. F. Tishkin},
     title = {Entropic regularization of the discontinuous {Galerkin} method for two-dimensional {Euler} equations in triangulated domains},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_3_a0/}
}
TY  - JOUR
AU  - Yu. A. Kriksin
AU  - V. F. Tishkin
TI  - Entropic regularization of the discontinuous Galerkin method for two-dimensional Euler equations in triangulated domains
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 3
EP  - 19
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_3_a0/
LA  - ru
ID  - MM_2023_35_3_a0
ER  - 
%0 Journal Article
%A Yu. A. Kriksin
%A V. F. Tishkin
%T Entropic regularization of the discontinuous Galerkin method for two-dimensional Euler equations in triangulated domains
%J Matematičeskoe modelirovanie
%D 2023
%P 3-19
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_3_a0/
%G ru
%F MM_2023_35_3_a0
Yu. A. Kriksin; V. F. Tishkin. Entropic regularization of the discontinuous Galerkin method for two-dimensional Euler equations in triangulated domains. Matematičeskoe modelirovanie, Tome 35 (2023) no. 3, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2023_35_3_a0/

[1] E. Tadmor, “Entropy stable schemes”, Handbook of Numerical Analysis, 17 (2016), 467–493 | MR

[2] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. and Appl. Math., Philadelphia, 1973, 59 pp. | MR

[3] S. Osher, “Riemann solvers, the entropy condition, and difference approximations”, SIAM J. Numer. Anal., 21 (1984), 217–235 | DOI | MR

[4] F. Bouchut, C. Bourdarias, B. Perthame, “A MUSCL method satisfying all the numerical entropy inequalities”, Math. Comput., 65 (1996), 1439–1461 | DOI | MR

[5] E. Tadmor, “Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems”, Acta Numerica, 2003, 451–512 | DOI | MR

[6] F. Ismail, P. Roe, “Affordable, entropy-consistent Euler flux functions II: Entropy produc-tion at shocks”, J. Comput. Phys., 228 (2009), 5410–5436 | DOI | MR

[7] P. Chandrashekar, “Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations”, Commun. Comput. Phys, 14:5 (2013), 1252–1286 | DOI | MR

[8] U. S. Fjordholm, S. Mishra, E. Tadmor, “Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws”, SIAM J. Numer. Anal., 50:2 (2012), 544–573 | DOI | MR

[9] X. Cheng, Y. Nie, “A third-order entropy stable scheme for hyperbolic conservation laws”, J. Hyperbolic Differ. Eq., 13:1 (2016), 129–145 | DOI | MR

[10] V. V. Ostapenko, “Symmetric compact schemes with higher order conservative artificial viscosities”, Comput. Math. Math. Phys., 7:1 (2002), 980–999 | MR

[11] A. A. Zlotnik, “Entropy-conservative spatial discretization of the multidimen-sional quasi-gasdynamic system of equations”, Comput. Math. Math. Phys., 57:4 (2017), 706–725 | DOI | MR

[12] B. Cockburn, “An introduction to the discontinuous Galerkin method for convection-dominated problems”, Lecture Notes in Mathematics, 1697, 1998, 151–268 | MR

[13] B. Cockburn, C. W. Shu, “The Runge Kutta Discontinuous Galerkin Method for Conservation Laws V: Multidimensional Systems”, J. Comput. Phys., 141 (1998), 199–224 | DOI | MR

[14] G. J. Gassner, A. R. Winters, D. A. Kopriva, “A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations”, Appl. Math. Comput., 272 (2016), 291–308 | MR

[15] N. Krais, A. Beck, T. Bolemann, H. Frank, D. Flad, G. J. Gassner, F. Hindenlang, M. Hoffmann, T. Kuhn, M. Sonntag, C. D. Munz, “FLEXI: A high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws”, Computers Mathematics with Applications, 81 (2021), 186–219 | DOI | MR

[16] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG”, MM CS, 5:4 (2013), 346–349

[17] M. E. Ladonkina, V. F. Tishkin, “Godunov method: a generalization using piece-wise polynomial approximations”, Differential Equations, 51:7 (2015), 895–903 | DOI | MR

[18] M. E. Ladonkina, V. F. Tishkin, “On Godunov-type methods of high order of accuracy”, Doklady Mathematics, 91:2 (2015), 189–192 | DOI | MR

[19] V. F. Tishkin, V. T. Zhukov, E. E. Myshetskaya, “Justification of Godunov's scheme in the multidimensional case”, MM CS, 8:5 (2016), 548–556 | MR

[20] Iu. A. Kriksin, V. F. Tishkin, “Entropiinaia reguliarizatsiia razryvnogo metoda Galerkina v odnomernykh zadachakh gazovoi dinamiki”, Preprinty IPM im. M.V. Keldysha, 2018, 100, 22 pp.

[21] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Verifikatsiia odnogo metoda entropiinoi reguliarizatsii razryvnykh skhem Galerkina dlia uravnenii giperbolicheskogo tipa”, Preprinty IPM im. M.V.Keldysha, 2019, 018, 25 pp.

[22] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Discontinuous Galerkin Method with an Entropic Slope Limiter for Euler Equations”, MM, 12:5 (2020), 824–833 | MR

[23] Y. A. Kriksin, V. F. Tishkin, “Chislennoe reshenie zadachi Einfeldta na osnove razryvnogo metoda Galerkina”, Preprinty IPM im. M.V. Keldysha, 2019, 090, 22 pp.

[24] Y. A. Kriksin, V. F. Tishkin, “Entropy-Stable Discontinuous Galerkin Method for Euler Equations Using Nonconservative Variables”, Math. Models and Computer Simul., 13:3 (2021), 416–425 | DOI | MR

[25] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Entropy-Stable Discontinuous Galerkin Method for Two-Dimensional Euler Equations”, MM, 13:5 (2021), 897–906 | MR

[26] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Entropic Regularization of the Discontinuous Galerkin Method in Conservative Variables for Two-Dimensional Euler Equations”, Mathematical Models and Computer Simulations, 14:4 (2022), 578–589 | DOI | MR

[27] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR

[28] J. Radon, “Zur mechanischen Kubatur”, Monatshefte fuer Mathematik, 52 (1948), 286–300 | DOI | MR

[29] I. P. Mysovskikh, Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981, 336 pp. | MR